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Introduction
A key weapon in fighting the COVID-19 epi-
demic is understanding how the contagion has 
spread through the U.S. population and how its 
spread is likely to evolve in the future. Based on 
such knowledge, public health measures can 
be devised, whether they are social distancing 
recommendations or more stringent lockdown 
procedures. Understanding of the disease’s path 
can be gained using theoretical or statistical 
modelling techniques that allow researchers 
to forecast its future course, which can then be 
used as a basis for decisions about further public 
health measures.

The coronavirus behind the COVID-19 pandemic 
is a novel contagion that is highly infectious, 
has a long incubation period, and can transmit 
asymptomatically, that is, without an infected 
person showing any signs of infection or disease. 
At the same time, this also means that data on 
infections and even deaths caused by the dis-
ease are difficult to collect, resulting in time lags 
between infections, possible fatalities, and data 
availability. In addition, the coronavirus is novel 
enough that previous experiences, such as the 
SARS pandemic of 2003, may not be immediately 
applicable.

A particularly vexing feature of many attempts 
to project the course of the pandemic in the 
U.S. and across the world is that projections 

have changed frequently, often in significant 
ways. This is true of forecasting models that rely 
on strong theoretical relationships, such as the 
Imperial College model that informed the U.K. 
government’s early response to the crisis, but 
also of the statistical model developed by the 
Institute for Health Metrics and Evaluation at the 
University of Washington that was referenced in 
the U.S. government’s response. 

This aspect of forecasting the course of the pan-
demic is problematic insofar as frequent revisions 
may cast doubt on the validity of the model. 
Macroeconomic forecasters are familiar with 
this challenge since the economy is buffeted by 
shocks, the data are subject to measurement er-
rors, and the underlying behavior of the variables 
may change over the forecast horizon because 
of policy interventions. All of these aspects are 
present in the current situation when attempting 
to forecast the path of the pandemic. 

However, there is the danger that policymakers 
and the public lose trust in the researchers’ and 
forecasters’ ability to capture and describe the 
disease. In such a forecasting environment, the 
source of uncertainty needs to be carefully com-
municated and taken into account during the 
decision-making process. Moreover, forecasters 
should adapt to the changing nature of the data 
and where forecasts went wrong.
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In this article, we describe a statistical model that we 
use to estimate and forecast the path of infections 
and deaths caused by COVID-19 in the U.S. We focus 
on documenting the uncertainty surrounding the 
estimates and projections, as our approach is not im-
mune to the issues raised above. However, we argue 
that understanding the source of uncertainty is an 
important step in making public health decisions.

The Epidemic Forecasting Model and Data
We have developed a statistical model for estimating 
and forecasting the number of infections and deaths 
over the course of the pandemic. (Documentation 
of the model and the sources can be found here). 
Our model is almost entirely data-driven, in that it 
tries to match the underlying time series properties 
of the data at hand in a flexible manner while at the 
same time relying on guidance from epidemiological 
insights about how an epidemic runs its course.

The time path of the number of infections during an 
epidemic follows a typical pattern. When a pathogen 
enters a population that is susceptible to infection, 
the number of infected cases is initially low. However, 
the growth rate of new infections is high and tends 
to rise sharply at an exponential rate because each 
infected person creates a chain of new infections. 
At some point, however, the pathogen runs out of 
susceptible hosts, either because they are already 
infected, are immune, or they are simply not physi-
cally present due to health policies such as social 
distancing. At this inflection point, the growth rate of 
infections falls until it eventually declines to zero.

In our empirical model, we attempt to replicate these 
broad patterns of an epidemic. We do so by specify-
ing a flexible functional form that describes the path 
of infections over time as depending on the current 
and lagged levels of the number of infections. The 
model is loosely parameterized, whereby the param-
eters are estimated to provide best fit of the model 
specification to the available data. In contrast to 
theoretical epidemiological models, our specification 
has more leeway to go where the data tell it to and is 
not constrained by precise theoretical relationships 
that may be specified incorrectly.

Identification of the model parameters is based 
on the growth rate and changes in the growth 
rate of infections. Early in an epidemic, the data 
typically show exponential growth, rapid and 
increasing, whereas after some time, as the stock 
of susceptible hosts starts getting smaller, the 
rise in the growth rate decelerates until it reaches 
a peak. Afterward, the growth rate of new infec-
tions declines. These three distinct phases of an 
epidemic can be associated with distinct param-
eters in our model, which are thus identified from 
the data flow.

This is also where a problematic aspect of any ep-
idemiological model lies. At first, data are sparse, 
but the underlying course of the infection is such 
that it should be easy to forecast. Put differently, 
the epidemic develops a very strong trend with 
exponential growth. Simply extrapolating from 
this growth trend would produce good forecasts 
for a while – until the spread starts slowing down 
and gravitates toward an inflection point. While 
epidemiological models based on the course of 
previous epidemics confirm that there will be an 
inflection point, estimates from the sparse initial 
data are highly uncertain. Moreover, theoreti-
cal and statistical epidemiological models are 
sensitive to small variations in parameters. It is 
in this sense that model estimates and forecasts 
should be interpreted with much caution at the 
beginning of the pandemic, and uncertainty at 
this stage should explicitly be taken into account 
when making public health policy decisions.

In addition to modeling infections, we also 
consider the mortality rate. Fundamentally, the 
number of deaths is a function of the number of 
infections. Not all infections are fatal, and an ob-
served death is the outcome of a process that can 
vary over time. We thus assume that the number 
of deaths on any given day is proportional to the 
average number of observed infections over a 
time period. This captures the idea that there is 
a minimum number of days that pass after an 
initial infection can result in a fatality.

https://www.richmondfed.org/-/media/richmondfedorg/research/regional_economy/regional_matters/2020/rm_04_23_20_appendix.pdf


A key aspect of our modeling approach is that we 
explicitly capture the uncertainty of the model esti-
mates and, perhaps more importantly, the uncertain-
ty inherent in the forecast. The precision of a forecast, 
or how tightly possible alternative forecast paths 
are concentrated around the most plausible path, 
is generally affected by two factors: first, the uncer-
tainty of the model estimates in terms of overall fit 
and parameter estimates since no statistical model 
fits precisely; and second, by the extent to which 
the model may be subject to further disturbances or 
imprecision in data collection in the future. We take 
both aspects into account to give a sense of how 
uncertain forecasts in a pandemic truly are, especially 
when the data flow is sparse at the beginning.

We fit our models to observed data on daily new 
cases of infections and deaths. The estimated mod-
els are then used to forecast the future paths of the 
respective variables, whereby we take into account 
all potential sources of uncertainty. We collect data 
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from a variety of publicly available sources. The 
estimates are performed on these data up to and 
including May 3, 2020. 

Estimates and Forecasts of the  
Number of Infections 
Figure 1 shows the cumulative number of cases, 
i.e., infections, in the U.S. and the daily count of 
new cases as a percentage of the population. 
The grey line in the graph represents the actual 
number of measured new infections, while the 
orange lines are drawn from the estimated mod-
el. We show the best-fitting line and a 95 percent 
confidence region around these estimates. In 
other words, the estimates represent our assess-
ment of the trend in number of infections as seen 
through the lens of the empirical model. They 
differ from the actual numbers because the latter 
are subject to various errors, such as simple data 
entry mistakes, different reporting guidelines 
and dates across the 50 states, and other idiosyn-
cratic variations in how the disease progresses.

Figure 1: Cumulative Cases and New Cases in the U.S.
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We estimate that the peak in the number of new 
infections was reached by mid-April, around April 
12. After this date, the number of new infections 
has been falling slowly but steadily. In terms of the 
cumulative case numbers, this suggests that the U.S. 
is already past the inflection point and that measures 
to suppress the spread of the pandemic have been 
working to some degree. However, since mid-April 
the incoming data on new cases have become 
increasingly volatile. This appears largely driven by 
the fact that infections have spread beyond a few 
clusters with very high case numbers, specifically 
New York City, to a wider swath of states. At the same 
time, the volatility does not seem to affect the me-
dian estimated path as it shows a general downward 
trend from the estimated peak.1

Given our last data point on May 3, we project the 
time path of new infections and cumulative cases 
forward until the start of August. We show the me-
dian forecast in Figure 1. The uncertainty region prior 
to May 3 captures the estimation uncertainty of the 
fitted model, while the uncertainty region after May 
3 includes uncertainty from disturbances in the data. 
We note that uncertainty about new case numbers 
widens immediately, which reflects both the un-
certainty about the dynamics of the pandemic and 
the uncertainty inherent in the data process. More 

specifically, wide uncertainty bands and volatile data 
suggest that one should consider the broader trend 
rather than extrapolate too much from a few recent 
data points. Our forecasted range of new infections 
includes the estimated peak, which indicates that 
the U.S. is not out of the woods yet and that it may, in 
fact, have reached a plateau. 

As the pandemic runs its course, the degree of 
uncertainty declines, however, and the incidence of 
new cases becomes more precisely estimated as the 
infection rate moves toward zero. The cumulative 
case numbers in Figure 1 are projected to grow over 
the next several months, albeit at a declining rate. 
By the start of August, we project 0.71 percent of the 
U.S. population will be infected, with a range of 0.66 
percent to 0.78 percent.

In Figure 2, we take a closer look at how the pas-
sage of time and the availability of more data have 
affected our projections. We estimate our model for 
data that were available, respectively, 14 and 28 days 
ago, before the current estimation date of May 3. The 
projections as of April 5 are shown in green, those as 
of April 19 in red, and the current estimate is in blue. 
We only show the respective 95 percent confidence 
regions.

Figure 2: Cumulative Cases and New Cases in the U.S.



Overall, the estimates for the last two samples are 
contained in the uncertainty region of the April 5 
sample. As more information became available, 
estimates of the underlying pattern in the infection 
data became more precise and the model developed 
a better sense of where the peak of new infections, 
thus the inflection point of the pandemic, were. 
Consequently, the projections became more precise. 
The same pattern can be seen for the April 19 and 
the May 3 sample. The latter is somewhat smaller, 
but it is also shifted upward for both cumulative and 
new cases. That is, the data flow over these 14 days 
led to improved precision in the forecast, but also 
in a revision of the projected path of the epidemic. 
We can tie this pattern to the fact that observed new 
infections appear to have plateaued over the last few 
days.
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Mortality Forecasts for the U.S.
Figure 3 shows our estimates of the mortality model 
described above and our projections for cumulative 
deaths through the end of July. These projections 
depend on our models for both the number of cases 
and the mortality rate, allowing for estimation uncer-
tainty and disturbances in both models. Our median 
projection of total fatalities by the start of August is 
159,000, with a range of 140,000 to 181,000. We also 
estimate that the number of daily deaths peaked 
around April 20 at 2,300, but there is considerably 
more uncertainty when compared with the infection 
model. 

Figure 3: Cumulative Deaths and New Deaths in the U.S.



The peak of the mortality data comes with a delay of 
about one week after new infections have peaked. 
Given what we know so far about the course of 
COVID-19, this lag appears short since the time from 
infection to death appears to be about four to five 
weeks. However, we are measuring as new cases 
those who have been tested, and this group is domi-
nated by those who have already developed more 
serious complications. Figure 3 also shows the in-
creased volatility of the recent mortality data, which 
affects the precision of the projections. Specifically, 
we cannot rule out that the peak of daily deaths has 
been reached since the uncertainty region for sev-
eral days out includes values that are considerably 
higher.

In Figure 4, we perform the same exercise as before 
where we estimate the mortality model for samples 
up to 14 and 28 days ago. Forecast uncertainty based 
on the April 5 data is very wide. The forecast left 
open the possibility that cumulative deaths would 
reach fewer than 50,000 by the start of August. At 
the time of the estimates, the sample was simply too 
short to result in tight inference. Moving the sample 
ahead to include data up to April 19 changes the 
outlook notably. In terms of cumulative deaths, the 
error bands are now contained within the April 5 
region, while moving to the current sample tightens 
uncertainty further. The graph with the uncertainty 
region for new deaths suggests, however, that the re-
duction in uncertainty is coming from bounding the 
forecast distribution from below. That is, the model 
now puts more weight on a higher number of fatali-
ties than could have been expected on April 5.

Figure 4: Cumulative Deaths and New Deaths in the U.S.
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Conclusion
Using a statistical model of the COVID-19 pandemic 
that attempts to capture the underlying patterns 
and evolution of infections and deaths, we project 
that by the start of August there will be 2.3 mil-
lion observed cases of COVID-19 infections, which 
translates to 0.71 percent of the U.S. population. At 
the same time, we forecast 159,000 fatalities for the 
same time period. Neither new infections nor daily 
deaths are likely to have returned to zero by then. 
The uncertainty surrounding these estimates is still 
considerable, with deaths ranging between 140,000 
to 181,000. As more data become available, the esti-
mates of the underlying pattern of the epidemic will 
become more precise and the uncertainty surround-
ing these forecasts will decline.

Our forecasts are implicitly predicated on the as-
sumption that the public health policies that have 
been put in place will not change over the course of 
the forecast horizon. In that sense, our forecasts pro-
vide an assessment of whether and to what extent 
these policies are successful. However, it is unlikely 
that they will continue, which will then affect the 
time path of the pandemic. The value of these fore-
casts thereby lies in highlighting the range of pos-
sible outcomes in a no-change scenario, which can 
serve as a benchmark to evaluate alternative public 
health measures against. 

Paul Ho is an economist and Thomas Lubik is a 
senior advisor in the Research Department of the 
Federal Reserve Bank of Richmond. Christian Mat-
thes is an associate professor in the Department of 
Economics at Indiana University.

Endnotes
  1   We can contrast this estimate with the one reported in our 

Regional Matters post “Forecasting the COVID-19 Pandemic in 
the Fifth District” based on data up to April 20. We estimated 
the peak to be several days earlier and the decline in new 
infections much steeper. Since then, the new data seemed to 
cluster around a plateau that by itself would have pushed out 
the peak estimate further. However, our initial model specifica-
tion was not well-suited to handle a data pattern that included 
such plateauing. We therefore modified the model slightly by 
including an additional parameter designed to capture this 
pattern, which improved fit.
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