
Documentation of the linear programming code used in
“Firms as Clubs in Walrasian Markets with Private

Information”

Edward Simpson Prescott∗

Federal Reserve Bank of Richmond

Robert M. Townsend∗

University of Chicago

Federal Reserve Bank of Chicago

July 11, 2007

Abstract

This note documents the linear programming code used in ”Firms as Clubs in
Walrasian Markets with Private Information.” It spells out the linear program and
then describes the structure of the code.

1 Introduction

This note describes the algorithm and the computer code used to solve the examples in

Prescott and Townsend (2006). The examples report Pareto optimal allocation and prices

and incomes that support them as competitive equilibria. The Pareto optimum are found

by solving a Pareto program, which is a linear program. Prices and incomes were then

determined from the allocation and the Lagrangian multipliers.

In principle, this is a straightforward exercise. In our club economies with private in-

formation, however, the first step – solving the Pareto program – is difficult. For any

∗The views expressed in this paper are solely those of the authors and do not necessarily reflect the
views of the Federal Reserve Banks of Chicago and Richmond or the Federal Reserve System. Con-
tact information: Prescott, Federal Reserve Bank of Richmond, P.O. Box 27622, Richmond, VA 23261,
Edward.Prescott@rich.frb.org; Townsend, Dept. of Economics, University of Chicago, 1126 E. 59th St.,
Chicago, IL 60637, rtownsen@midway.uchicago.edu.

1

reasonable application, a large number of possible contracts is needed. In our economy,

each possible contract is a different commodity, so there are a huge number of variables and

constraints in the linear program. The appendix to Prescott and Townsend (2006) reformu-

lates the Pareto program into an alternative formulation, which removes the large number

of club constraints. However, this program still has an enormous number of variables, too

large to directly enter into computer memory.

Instead, the program is solved by using the Dantzig-Wolfe decomposition algorithm.

This algorithm is a simplex-based algorithm that can be used to solve linear programs with

a block angular constraint matrix, that is, a constraint matrix with blocks of variables and

constraints with non-zero coefficients that are only connected by a few constraints. The

algorithm was first developed by Dantzig and Wolfe (1960). Descriptions of it can be found

by in many advanced linear programming textbooks like Bertsimas and Tsitsiklis (1997).

Prescott (2004) uses this algorithm to solve moral-hazard programs.

This document gives a short summary of the code. For a description of the algorithm,

as it is applied to club economies, see the appendix in Prescott and Townsend (2006).

2 The Code

The code is written in a programming language called GAMS. Programming languages

like GAMS are well suited to solving linear programs. The programmer only needs to

program the parameters. The programming language handles the interface with the linear

programming subroutine.solver.1 In this problem, we used the BDMLP linear program

solver that comes with GAMS.

The code is divided into five parts.

1. Define the parameters.

2. Define the subprograms.

1The code was originally programmed in Matlab for a different example than the one reported in the
final version of the paper. This code is available on request. It is longer and not so well documented.
Furthermore, it called a linear programming routine that we no longer use. A user of this code would have
to get hold of a linear programming routine callable from Matlab and then modify the code to enter the
coefficients in the form needed by the routine.

2

3. Define the master program.

4. Run the algorithm.

5. Calculate prices and incomes and write results to a text file.

The first step in the algorithm is to find a feasible starting point. Simplex based

algorithms find a feasible starting point by solving a particular auxiliary linear program.

This step is commonly called Phase one of the algorithm. Given all the data, most linear

programming routines automatically find a starting point, but because we cannot specify

the whole problem – remember, we only generate columns of the master program with each

iteration – we have to use the Dantzig-Wolfe algorithm to solve Phase one. See Bertsimas

and Tsitsiklis (1999) for more details on this step.

Once a feasible solution is found, the algorithm searches for an optimum. This is

commonly called Phase two of the simplex algorithm. We also solve this step with the

Dantzig-Wolfe algorithm. Given a feasible solution to the master program, the dual vari-

ables are calculated, then these variables are used to solve the subprograms. The solutions

to the subprograms are then used to check the optimality conditions and entered into the

master program if needed. See the appendix of Prescott and Townsend (2006) for more

details.

Once a solution to the master program is found, the code solves the appropriate sub-

programs to calculate the solution. It then calculates prices and incomes, and writes all

the results to a text file.

Finally, when we define the subprograms and the master program, we define two versions

of each program. One version is used when solving Phase one and the other version is used

when solving Phase two of the algorithm. Part 4 consists of one single loop. The same

loop is used for both phases of the algorithm. If-then statements are used to keep track of

whether the Phase one or Phase two version of a program needs to be called. More details

are contained in the code.

3

3 References

References

[1] Bertsimas, Dimitris and John N. Tsitsiklis. Introduction to Linear Optimization. Bel-

mont, Massachusetts: Athena Scientific, 1997.

[2] Dantzig, George B. and Philip Wolfe. “The Decomposition Principle for Linear Pro-

grams.” Econometrica 29 (October 1961): 767-78.

[3] Prescott, Edward Simpson “Computing Solutions to Moral-Hazard Programs Using the

Dantzig-Wolfe Decomposition Algorithm.” Journal of Economic Dynamics and Control

28 (January 2004): 777-800

[4] Prescott, Edward Simpson and Robert M. Townsend. “Firms as Clubs in Walrasian

Markets with Private Information.” Journal of Political Economy 114 (August 2006):

644-71.

4

 1 $title Example in paper: Solved with D-W
 2 ***
 3 * This program solves for a Pareto optimum and then finds prices and
 4 * incomes that support it as a competitive equilibrium. The example
 5 * solved is the one used in the paper, "Firms as Clubs in Walrasian
 6 * Markets with Private Information." The program uses the Dantzig-Wolfe
 7 * algorithm to solve the Alternative Pareto Program in the Appendix. A
 8 * supporting competitive equilibrium is then calculated.
 9 *
 1 0 * Note 1: The program is setup to loop over a range of Pareto weights and
 1 1 * capital levels. What is shown below is the single run for the
 1 2 * pareto weight and capital level combination used in the example
 1 3 * reported in the paper. The bigger loops are commented out. If these
 1 4 * are to be implemented changes need to be made to numbers of values
 1 5 * in the sets ik and ipw. (The indices for capital levels and Pareto
 1 6 * weights.)
 1 7 *
 1 8 * Note 2: the code is written to only handle case where agents are not
 1 9 * intrinsically different. They can differ in their Pareto weights. Also,
 2 0 * it is written for only two types. Would require some modification
 2 1 * for more than two types.
 2 2 *
 2 3 * Note 3: Idle firms are lumped together with self-employment firms
 2 4 * by solving one subprogram. They are differentiated by using
 2 5 * constraints. For example, the idle firms are handled by requiring
 2 6 * that if k=0 then a=0 (and vice versa) and dropping the incentive
 2 7 * constraints in this case. Similarly, self-employment firms are handled
 2 8 * by requiring that if k>0 then a>0, and imposing the incentive
 2 9 * constraints.
 3 0 *
 3 1 * 10/13/05
 3 2 * Edward S. Prescott
 3 3 *
 3 4 * Note 4: This code could be substantially improved by keeping track
 3 5 * of subprogram results and then using these results in other loops.
 3 6 *
 3 7 **
 3 8
 3 9 * PART I - DEFINE THE PARAMETERS
 4 0 * NOTE: thi has to be defined first because it starts with 0, we have
 4 1 * lots of other ordered sets that start with 1, and we want thi to be
 4 2 * an ordered set.
 4 3 set t h i position for the supervisor /0*2/;
 4 4 set c c o n s u m p t i o n /1*61/
 4 5 q o u t p u t /1*2/
 4 6 a a c t i o n s /1*3/
 4 7 k capital input /1*3/
 4 8 j o b j o b /1*2/
 4 9 t h agent types /1*2/
 5 0 i k index capital endowment levels /1/
 5 1 i p w index Pareto weights /1/ ;
 5 2 * ik index capital endowment levels /1*21/
 5 3 * ipw index Pareto weights /1*17/ ;
 5 4 * Define an index of the different firm-agent combinations
 5 5 * Use (th,thi) combinations to index firms.
 5 6 * The SE firms are (1,0) and (2,0).
 5 7 * The SW firms are (1,1), (1,2), (2,1), and (2,2).
 5 8 set se(th,thi) set of SE firms /(1*2).0/
 5 9 sw(th,thi) set of SW firms /(1*2).(1*2)/
 6 0 ds1(th,thi) firms with type-1 as sup /(1*2).1/
 6 1 ds2(th,thi) firms with type-2 as sup /(1*2).2/;
 6 2
 6 3 alias (c,cw,cs), (q,qbar), (a,abar,ahat), (k,kbar), (th,thp,thr);
 6 4

 6 5 parameter c0(c) Consumption
 6 6 q0(q) Output
 6 7 a0(a) Action
 6 8 k0(k) Capital input
 6 9 u(c,a,job,k) Utility function
 7 0 dis(job) Disutility parameter on job
 7 1 p(q,a,k) Technology
 7 2 rc1(c,q) resource usage by self-employment firm
 7 3 rc2(cw,cs,q) resource usage by supervisor-worker firm
 7 4 k a p p a capital endowment for given loop
 7 5 kap(ik) Capital endowment levels
 7 6 ParW(ipw) Type-1 Pareto weight
 7 7 lam(th) Pareto weights for a given loop
 7 8 alp(th) Each type's fraction of the population;
 7 9
 8 0 * Set the grids, technology, and resource level.
 8 1 c0(c) = (1.2/(card(c)-1))*(ord(c)-1);
 8 2 q0("1") = 0; q0("2") = 1;
 8 3 a0("1") = 0; a0("2") = 1; a0("3") = 2;
 8 4 k0(k) = ord(k)-1;
 8 5 * Set probabilities for the zero capital and zero effort cases
 8 6 p("1",a,"1") = 1; p("2",a,"1") = 0;
 8 7 p("1","1",k) = 1; p("2","1",k) = 0;
 8 8 * Set probabilities for the other cases
 8 9 p("1","2","2") = 0.80; p("2","2","2") = 0.20;
 9 0 p("1","3","2") = 0.50; p("2","3","2") = 0.50;
 9 1 p("1","2","3") = 0.60; p("2","2","3") = 0.40;
 9 2 p("1","3","3") = 0.20; p("2","3","3") = 0.80;
 9 3 * Set fractions of population
 9 4 alp("1") = 0.5; alp("2") = 0.5;
 9 5 * Set capital levels for loop
 9 6 * Creates an equally spaced grid over the range [0.2,1.2]
 9 7 * kap(ik) = (1/(card(ik)-1))*(ord(ik)-1)+ 0.2;
 9 8 kap("1") = 0.6;
 9 9
 1 0 0 * Set Pareto weights for loop
 1 0 1 * Creates and equally spaced grid over the range [0.01,0.49]
 1 0 2 * ParW(ipw) = (.48/(card(ipw)-1))*(ord(ipw)-1)+ 0.01;
 1 0 3 ParW("1") = 0.16;
 1 0 4
 1 0 5 * Define utility and resource usage in terms of the grids.
 1 0 6 * job = 1 corresponds to worker, job = 2 corresponds to supervisor
 1 0 7 dis("1") = 1; dis("2") = 0.1;
 1 0 8 u(c,a,job,k) = 2*c0(c)**0.5 - dis(job)*((a0(a)/4));
 1 0 9 rc1(c,q) = c0(c) - q0(q);
 1 1 0 rc2(cw,cs,q) = c0(cw) + c0(cs) - q0(q);
 1 1 1
 1 1 2 * Open the output file for the solutions set some parameters that
 1 1 3 * control the display of output.
 1 1 4 file mfile /FinalLoop.out/;
 1 1 5 mfile.pc = 0;
 1 1 6 mfile.ps = 120;
 1 1 7 * Open an output file for writing data about the type of
 1 1 8 * supervisor-worker firms that are created.
 1 1 9 file mfile2 /FinalLoop.m/;
 1 2 0
 1 2 1 ***
 1 2 2 * The following parameters are updated by the master program. Because
 1 2 3 * they are used by all of the subprograms they are defined first.
 1 2 4
 1 2 5 scalar l a m w worker's Pareto weight
 1 2 6 l a m s supervisor's Pareto weight
 1 2 7 m u c multiplier on consumption resource constraint
 1 2 8 m u k multiplier on capital resource constraint

 1 2 9 m u w multiplier on worker's (or SE) meas. constraint
 1 3 0 m u s multiplier on supervisor's measure constraint;
 1 3 1 parameter mum(th) multipliers on agent's measure constraint;
 1 3 2
 1 3 3 ***
 1 3 4 * PART II - DEFINE THE SUBPROBLEMS
 1 3 5 * Setup the self-employment subproblem. The scalar variables above are
 1 3 6 * updated by the algorithm.
 1 3 7 positive variables pi1(c,q,a,k) Probability;
 1 3 8
 1 3 9 * These variables are useful because they are generate numbers needed
 1 4 0 * by the master program. The 1 at the end means that this problem refers
 1 4 1 * to the single agent subproblem.
 1 4 2 variables u t i l s 1 Agents utility
 1 4 3 r e s c 1 Consumption resource usage
 1 4 4 r e s k 1 Capital resource usage
 1 4 5 o b j 1 Value of subproblem objective function;
 1 4 6
 1 4 7 equations sub1obj, sub1utils, sub1resc, sub1resk, sub1tech,
 1 4 8 sub1ic, sub1meas, sub1objph1, sub1k1, sub1a1;
 1 4 9
 1 5 0 sub1objph1.. obj1 =e= -muc*resc1-muk*resk1-muw;
 1 5 1 sub1obj.. obj1 =e= lamw*utils1 - muc*resc1-muk*resk1-muw;
 1 5 2 sub1utils.. utils1 =e= sum((c,q,a,k), pi1(c,q,a,k) * u(c,a,"1",k));
 1 5 3 sub1resc.. resc1 =e= sum((c,q,a,k), pi1(c,q,a,k) * rc1(c,q));
 1 5 4 sub1resk.. resk1 =e= sum((c,q,a,k), pi1(c,q,a,k) * k0(k));
 1 5 5 sub1tech(qbar,abar,kbar)..
 1 5 6 sum(c, pi1(c,qbar,abar,kbar))
 1 5 7 =e= p(qbar,abar,kbar) * sum((c,q), pi1(c,q,abar,kbar));
 1 5 8 * No IC for k=0 and a=0. (Idle "firms"). For SE firms, IC only
 1 5 9 * allow deviations to non-zero a.
 1 6 0 sub1ic(a,ahat,k)$(not sameas(a,ahat) and k0(k) ne 0 and a0(a) ne 0
 1 6 1 and a0(ahat) ne 0)..
 1 6 2 sum((c,q), pi1(c,q,a,k) * u(c,a,"1",k)) =g=
 1 6 3 sum((c,q), pi1(c,q,a,k) * p(q,ahat,k)/p(q,a,k) * u(c,ahat,"1",k));
 1 6 4 sub1meas.. sum((c,q,a,k), pi1(c,q,a,k)) =e= 1;
 1 6 5 * Constraints that guarantee that a=0 if k=0 and vice versa
 1 6 6 sub1k1.. sum((c,q,k)$(k0(k) ne 0), pi1(c,q,"1",k)) =e= 0;
 1 6 7 sub1a1.. sum((c,q,a)$(a0(a) ne 0), pi1(c,q,a,"1")) =e= 0;
 1 6 8
 1 6 9 model sub1ph1 /sub1objph1, sub1utils, sub1resc, sub1resk, sub1tech,
 1 7 0 sub1ic, sub1meas, sub1k1, sub1a1/;
 1 7 1 model sub1 /sub1obj, sub1utils, sub1resc, sub1resk, sub1tech,
 1 7 2 sub1ic, sub1meas, sub1k1, sub1a1/;
 1 7 3
 1 7 4 ***
 1 7 5 * Setup the supervisor-worker subproblem. The scalar variables are
 1 7 6 * updated by the algorithm.
 1 7 7 * NOTE: pi2 is only indexed by one effort level. In the paper, we
 1 7 8 * constrain worker's and supervisor's effort to be equal. Rather than
 1 7 9 * distinguishing between their efforts and putting a constraint that
 1 8 0 * requires them to be equal, only one effort level is written and it is
 1 8 1 * applied to both agents. The generalization is easy to do though it
 1 8 2 * makes the equations longer.
 1 8 3
 1 8 4 positive variables pi2(cw,cs,q,a,k) Probability;
 1 8 5
 1 8 6 * These variables are useful because they generate numbers needed
 1 8 7 * by the master program. The 2 at the end means that this problem refers
 1 8 8 * to the supervisor-worker subproblem.
 1 8 9 variables u t i l s w 2 Worker's utility
 1 9 0 u t i l s s 2 Supervisor's utility
 1 9 1 r e s c 2 Consumption resource usage
 1 9 2 r e s k 2 Capital resource usage

 1 9 3 o b j 2 Value of subproblem objective function;
 1 9 4
 1 9 5 equations sub2obj, sub2utilsw, sub2utilss, sub2resc, sub2resk,
 1 9 6 sub2tech, sub2meas, sub2objph1, sub2k1, sub2a1;
 1 9 7
 1 9 8 sub2objph1.. obj2 =e= -muc*resc2-muk*resk2-muw-mus;
 1 9 9 sub2obj.. obj2 =e= lamw*utilsw2+lams*utilss2
 2 0 0 - muc*resc2-muk*resk2-muw-mus;
 2 0 1 sub2utilsw.. utilsw2 =e= sum((cw,cs,q,a,k),
 2 0 2 pi2(cw,cs,q,a,k) * u(cw,a,"1",k));
 2 0 3 sub2utilss.. utilss2 =e= sum((cw,cs,q,a,k),
 2 0 4 pi2(cw,cs,q,a,k) * u(cs,a,"2",k));
 2 0 5 sub2resc.. resc2 =e= sum((cw,cs,q,a,k),
 2 0 6 pi2(cw,cs,q,a,k) * rc2(cw,cs,q));
 2 0 7 sub2resk.. resk2 =e= sum((cw,cs,q,a,k),
 2 0 8 pi2(cw,cs,q,a,k)* k0(k));
 2 0 9 sub2tech(qbar,abar,kbar)..
 2 1 0 sum((cw,cs), pi2(cw,cs,qbar,abar,kbar))
 2 1 1 =e= p(qbar,abar,kbar)*sum((cw,cs,q), pi2(cw,cs,q,abar,kbar));
 2 1 2 sub2meas.. sum((cw,cs,q,a,k), pi2(cw,cs,q,a,k)) =e= 1;
 2 1 3 * A simple way to guarantee that supervisor-worker firms can't choose
 2 1 4 * zero capital or zero effort.
 2 1 5 sub2k1.. sum((cw,cs,q,a), pi2(cw,cs,q,a,"1")) =e= 0;
 2 1 6 sub2a1.. sum((cw,cs,q,k), pi2(cw,cs,q,"1",k)) =e= 0;
 2 1 7
 2 1 8 model sub2ph1 /sub2objph1, sub2utilsw, sub2utilss, sub2resc, sub2resk,
 2 1 9 sub2tech, sub2meas, sub2k1, sub2a1/;
 2 2 0 model sub2 /sub2obj, sub2utilsw, sub2utilss, sub2resc, sub2resk,
 2 2 1 sub2tech, sub2meas, sub2k1, sub2a1/;
 2 2 2
 2 2 3 * PART III - DEFINE THE MASTER PROGRAM
 2 2 4 **************Master program***
 2 2 5 * slab labels the iterations for the master program. The columns are
 2 2 6 * indexed by the cross-product of the subproblem, (th,thi), with slab.
 2 2 7
 2 2 8 sets s l a b master program iterations /1*1000/
 2 2 9 s(th,thi,slab) generated columns from subproblems;
 2 3 0
 2 3 1 * s(th,thi,slab) is a dynamic set. As master program iterations are run,
 2 3 2 * we will make new elements of it active. The (th,thi) pairs cover the
 2 3 3 * combinations (1,0),(2,0),(1,1),(1,2),(2,1),(2,2). Each corresponds to
 2 3 4 * a subproblem: (1,0) refers to an agent 1 self-employment firm,
 2 3 5 * while (1,2) refers to a sup-worker firm with agent 1 as the worker and
 2 3 6 * agent 2 as the supervisor.
 2 3 7
 2 3 8 * To start the algorithm, make all the columns inactive.
 2 3 9 s(th,thi,slab) = no;
 2 4 0
 2 4 1 * mutils() will equal lam(th)u(b1,w) for a SE firm and it will
 2 4 2 * equal lam(th)u(b2,w)+lam(thi)u(b2,s) for a SW firm.
 2 4 3 parameter mutils(th,thi,slab) contrib to obj from subprob
 2 4 4 mresc(th,thi,slab) net cons. usage by subprob
 2 4 5 mresk(th,thi,slab) capital usage by subprob
 2 4 6 meas(thp,th,thi,slab) contrib. to measure constr.;
 2 4 7 * The probability measure coefficients are defined here
 2 4 8 * This is inelegant. Should be a better way to do this.
 2 4 9 parameter th0(th)
 2 5 0 th1(thi);
 2 5 1 th0(th) = ord(th); th1("0") = 0; th1("1") = 1; th1("2") = 2;
 2 5 2 meas(thp,th,thi,slab) = 0;
 2 5 3 * Pick up SE firms and SW firms with different types
 2 5 4 * where thp is the worker
 2 5 5 meas(thp,th,thi,slab)$(th0(thp)=th0(th) and th0(thp) ne th1(thi)) = 1;
 2 5 6 * Pick up SW firms with different types where thp is the supervisor

 2 5 7 meas(thp,th,thi,slab)$(th0(thp) ne th0(th) and th0(thp)=th1(thi)) = 1;
 2 5 8 * Pick up SW firms where thp is both the worker and supervisor.
 2 5 9 * Counted twice.
 2 6 0 meas(thp,th,thi,slab)$(th0(thp) = th0(th) and th0(thp)=th1(thi)) = 2;
 2 6 1
 2 6 2 * Create a parameter that keeps track of the simplex multipliers used
 2 6 3 * to solve the subprograms.
 2 6 4 parameter mmc(slab) Consumption multiplier
 2 6 5 mmk(slab) Capital mulitplier
 2 6 6 mm1(slab) Agent 1's prob measure constraint
 2 6 7 mm2(slab) Agent 2's prob measure constraint
 2 6 8 aux(slab) 1 means aux lp while 2 means reg lp;
 2 6 9
 2 7 0 positive variables mprob(th,thi,slab)
 2 7 1 excess(thp) used for phase 1
 2 7 2 s l c 1 slack var on cons. res. constraint
 2 7 3 s l k 1 slack var on cap. res. constraint;
 2 7 4 variables mobj;
 2 7 5
 2 7 6 * Variables that end with ph1 are only used when solving Phase I of
 2 7 7 * the algorithm.
 2 7 8
 2 7 9 equations m a s o b j objective function
 2 8 0 m a s r e s c net consumption resource constraint
 2 8 1 m a s r e s k capital resource constraint
 2 8 2 masmeas(thp) probability measure constraints
 2 8 3 m a s o b j p h 1 Phase 1 objective function
 2 8 4 masmeasph1(thp) Phase 1 probability measure constraints»
 ;
 2 8 5
 2 8 6 masobj.. mobj =e= sum(s,mprob(s)*mutils(s));
 2 8 7 masobjph1.. mobj =e= sum(thp,-excess(thp));
 2 8 8 masresc.. sum(s, mprob(s)*mresc(s)) + slc1 =e= 0;
 2 8 9 masresk.. sum(s, mprob(s)*mresk(s)) + slk1 =e= kappa;
 2 9 0 masmeas(thp).. sum(s, mprob(s)*meas(thp,s)) =e= alp(thp);
 2 9 1 masmeasph1(thp).. sum(s,mprob(s)*meas(thp,s))+excess(thp) =e= alp(thp)»
 ;
 2 9 2
 2 9 3 * Auxiliary master lp used in Phase I to find a feasible starting point.
 2 9 4 model masterph1 /masobjph1, masresc, masresk, masmeasph1/;
 2 9 5 * Master lp used in Phase II to find a solution.
 2 9 6 model master /masobj, masresc, masresk, masmeas/;
 2 9 7
 2 9 8 * Set print and workspace options on the all the lp's
 2 9 9 * Used the bdmlp solver
 3 0 0 option lp = bdmlp;
 3 0 1 option limcol=0, limrow=0, solprint= off, sysout=off;
 3 0 2 * The bratio option makes sure that GAMS doesn't use information
 3 0 3 * from previous solves in generating a basis. This is important
 3 0 4 * because subprograms that are part of the solution to the master
 3 0 5 * program are resolved to generate the optimal contracts. By not
 3 0 6 * using information from previous solves, each lp will reach the
 3 0 7 * same solution if resolved. This prevents the possibility of a
 3 0 8 * subprogram having multiple solutions and the code generating
 3 0 9 * a master program column with one solution and then calculating
 3 1 0 * prices, incomes, and optimal contracts from a different solution.
 3 1 1 * The gap variable is a partial check for this.
 3 1 2 option bratio = 1;
 3 1 3 master.bratio = 1;
 3 1 4 sub1.bratio = 1; sub1ph1.bratio = 1;
 3 1 5 sub2.bratio = 1; sub2ph1.bratio = 1;
 3 1 6
 3 1 7 ***
 3 1 8 * PART IV - RUN THE DANTZIG-WOLFE ALGORITHM

 3 1 9 *
 3 2 0 * The simplex algorithm needs a feasible solution to start, so the first
 3 2 1 * thing to do is solve Phase one of the simplex algorithm. This is done
 3 2 2 * by using the Dantzig-Wolfe algorithm to solve the auxiliary linear
 3 2 3 * program. However, the auxiliary linear program also needs a feasible
 3 2 4 * solution to start. Given the way we set the Phase 1 problem up, this is
 3 2 5 * easy. The auxiliary master program will just choose non-zero values of
 3 2 6 * the slack variables.
 3 2 7
 3 2 8 * As long as the master program has a feasible solution, the solution to
 3 2 9 * the auxiliary lp will satisfy excess(thp)=0 and it will be a feasible
 3 3 0 * solution to the master lp. We can then initiate D-W with that feasible
 3 3 1 * solution.
 3 3 2 *
 3 3 3 * Both phase one and phase two are solved using the same while loop. When
 3 3 4 * different operations are used by the two phases, if-then statements are
 3 3 5 * used to perform the right operation. The parameter phase = 1 means
 3 3 6 * phase one is being run, while phase = 2 means phase two is being run.
 3 3 7 *
 3 3 8 **
 3 3 9
 3 4 0 * Do some necessary declarations
 3 4 1 * submax is the the maximum number of loops allowed
 3 4 2 * (needed in case of cycling or really slow convergence)
 3 4 3 * done=0 means the while loop is not done, =1 means done
 3 4 4 * phase indicates which phase the algorithm is in
 3 4 5 scalar submax /1000/
 3 4 6 done /0/
 3 4 7 phase /1/;
 3 4 8 parameter p r e s c multiplier on net consumption
 3 4 9 p r e s k multiplier on capital
 3 5 0 pmc(th) multipliers on prob. measure constraints;
 3 5 1
 3 5 2 * Set some values that will be used for calculating things used in
 3 5 3 * creating the output
 3 5 4 set j /1*4/;
 3 5 5 parameter prices(thr,thi,slab,job) keep track of prices
 3 5 6 voffirm(thr,thi,slab) value of a firm
 3 5 7 sumsw(ipw,ik,j) keeps track of sw firms for each run»
 ;
 3 5 8 sumsw(ipw,ik,j)=0;
 3 5 9 scalar zs
 3 6 0 pk;
 3 6 1 parameter expenditures(th) total expenditures by an agent type
 3 6 2 expper(th) per capital expenditures;
 3 6 3 parameter a u t i l 1 type-1 agents' utility
 3 6 4 a u t i l 2 type-2 agents' utility
 3 6 5 c o u n t 1 useful counter
 3 6 6 c o u n t 2 another useful counter
 3 6 7 gap;
 3 6 8 loop(ipw,
 3 6 9 lam("1") = ParW(ipw); lam("2") = 1-lam("1");
 3 7 0 loop(ik,
 3 7 1 kappa = kap(ik);
 3 7 2 * reset the dynamic sets to restart the algorithm
 3 7 3 s(th,thi,slab) = no;
 3 7 4 * Need to reset probabilities to zero for each run, because GAMS
 3 7 5 * does not reset values of this variable.
 3 7 6 mprob.l(th,thi,slab) = 0;
 3 7 7 * This first loop finds a starting point for the auxiliary lp. It
 3 7 8 * generates an arbitrary column for the master program from the
 3 7 9 * subprograms. By putting a column in the master constraint matrix
 3 8 0 * the auxiliary lp has some data from which it can always get an
 3 8 1 * initial feasible solution. With an arbitrary column, there will

 3 8 2 * always be a solution that puts zero weight on the column and sets
 3 8 3 * the slack variables equal to the values of the constraints. This
 3 8 4 * suggests we could skip the column but GAMS did not like having no
 3 8 5 * values in some of the master auxiliary lp (e.g. mresc or mresk).
 3 8 6
 3 8 7 * Pick some arbitrary simplex multiplier values.
 3 8 8 muw = 1; mus = 1; muc = 1; muk = 1;
 3 8 9 loop((thi,thr),
 3 9 0 * Check to see if it is a single-agent subproblem
 3 9 1 if (se(thr,thi),
 3 9 2 lamw = lam(thr);
 3 9 3 solve sub1ph1 using lp maximizing obj1;
 3 9 4 abort$(sub1ph1.modelstat=4) "SE subproblem infeasible";
 3 9 5 abort$(sub1ph1.modelstat<>1) "SE subproblem not solved to opti»
 mum";
 3 9 6 * Add the solution to the master program
 3 9 7 mutils(thr,thi,"1") = lamw*utils1.l;
 3 9 8 mresc(thr,thi,"1") = resc1.l; mresk(thr,thi,"1") = resk1.l;
 3 9 9 * If it is a supervisor-worker subproblem
 4 0 0 else
 4 0 1 * Set parameters for worker position
 4 0 2 lamw = lam(thr);
 4 0 3 * Set parameters for supervisor position (there should be a bette»
 r
 4 0 4 * way to do this). First, check to see if type-1 is the sup.
 4 0 5 if (ds1(thr,thi),
 4 0 6 lams = lam("1");
 4 0 7 else
 4 0 8 lams = lam("2");
 4 0 9);
 4 1 0 solve sub2ph1 using lp maximizing obj2;
 4 1 1 abort$(sub2ph1.modelstat=4) "SW subproblem infeasible";
 4 1 2 abort$(sub2ph1.modelstat<>1) "SW subproblem not solved to optim»
 um";
 4 1 3 * Add the solution to the master program
 4 1 4 mutils(thr,thi,"1") = lamw*utilsw2.l+lams*utilss2.l;
 4 1 5 mresc(thr,thi,"1") = resc2.l; mresk(thr,thi,"1") = resk2.l;
 4 1 6);
 4 1 7 * Make the column of the master program active
 4 1 8 s(thr,thi,"1") = yes;
 4 1 9);
 4 2 0 mmc("1") = muc; mmk("1") = muk;
 4 2 1 mm1("1") = muw; mm2("1") = mus;
 4 2 2 aux("1") = 1;
 4 2 3
 4 2 4 ***********************************
 4 2 5 ************************************
 4 2 6 * Start the D-W loop
 4 2 7 * First, set some parameter values that control the loop.
 4 2 8 done = 0; phase = 1;
 4 2 9
 4 3 0 loop(slab$(ord(slab) ne 1 and not done),
 4 3 1
 4 3 2 if (phase=1,
 4 3 3 solve masterph1 using lp maximizing mobj;
 4 3 4 abort$(masterph1.modelstat=4) "Auxiliary lp infeasible";
 4 3 5 abort$(masterph1.modelstat<>1) "Auxiliary lp not solved to optimu»
 m";
 4 3 6 mum(th) = masmeasph1.m(th);
 4 3 7 aux(slab) = 1;
 4 3 8 else
 4 3 9 solve master using lp maximizing mobj;
 4 4 0 abort$(master.modelstat=4) "Master lp infeasible";
 4 4 1 abort$(master.modelstat<>1) "Master lp not solved to optimum";

 4 4 2 mum(th) = masmeas.m(th);
 4 4 3 aux(slab) = 2;
 4 4 4);
 4 4 5 muc = masresc.m; muk = masresk.m;
 4 4 6 * Store the simplex multipliers so they can be recovered later
 4 4 7 mmc(slab) = muc; mmk(slab) = muk;
 4 4 8 mm1(slab) = mum("1"); mm2(slab) = mum("2");
 4 4 9 submax = 0;
 4 5 0
 4 5 1 * Now solve the subproblems. Loop over all the different types of
 4 5 2 * firms, i.e., (1,0), (2,0), (1,1), (1,2), (2,1), and (2,2).
 4 5 3 loop((thi,thr),
 4 5 4 * If it is a self-employment subproblem
 4 5 5 if (se(thr,thi),
 4 5 6 lamw = lam(thr); muw = mum(thr);
 4 5 7 if (phase=1,
 4 5 8 solve sub1ph1 using lp maximizing obj1;
 4 5 9 abort$(sub1ph1.modelstat=4) "SE subproblem infeasible";
 4 6 0 abort$(sub1ph1.modelstat<>1) "SE subproblem not solved to op»
 timum";
 4 6 1 else
 4 6 2 solve sub1 using lp maximizing obj1;
 4 6 3 abort$(sub1.modelstat=4) "SE subproblem infeasible";
 4 6 4 abort$(sub1.modelstat<>1) "SE subproblem not solved to optim»
 um";
 4 6 5);
 4 6 6 * Add the solution to the master program
 4 6 7 mutils(thr,thi,slab) = lamw*utils1.l;
 4 6 8 mresc(thr,thi,slab) = resc1.l; mresk(thr,thi,slab) = resk1.l;
 4 6 9 submax = max(submax,obj1.l);
 4 7 0 * If it is a supervisor-worker subproblem
 4 7 1 else
 4 7 2 * Set parameters for worker position
 4 7 3 lamw = lam(thr); muw = mum(thr);
 4 7 4 * Set parameters for supervisor position (there should be a bette»
 r
 4 7 5 * way to do this). First, check to see if type-1 is the sup.
 4 7 6 if (ds1(thr,thi),
 4 7 7 lams = lam("1"); mus = mum("1");
 4 7 8 else
 4 7 9 lams = lam("2"); mus = mum("2");
 4 8 0);
 4 8 1 if (phase=1,
 4 8 2 solve sub2ph1 using lp maximizing obj2;
 4 8 3 abort$(sub2ph1.modelstat=4) "SW subproblem infeasible";
 4 8 4 abort$(sub2ph1.modelstat<>1) "SW subproblem not solved to opt»
 imum";
 4 8 5 else
 4 8 6 solve sub2 using lp maximizing obj2;
 4 8 7 abort$(sub2.modelstat=4) "SW subproblem infeasible";
 4 8 8 abort$(sub2.modelstat<>1) "SW subproblem not solved to optimu»
 m";
 4 8 9);
 4 9 0 * Add the solution to the master program
 4 9 1 mutils(thr,thi,slab) = lamw*utilsw2.l+lams*utilss2.l;
 4 9 2 mresc(thr,thi,slab) = resc2.l; mresk(thr,thi,slab) = resk2.l;
 4 9 3 submax = max(submax,obj2.l);
 4 9 4);
 4 9 5 s(thr,thi,slab) = yes;
 4 9 6);
 4 9 7
 4 9 8 * submax is the highest value of the optimality conditions
 4 9 9 if ((phase = 1 and submax < 0.00001),
 5 0 0 phase = 2; submax = 10000;

 5 0 1 abort$(mobj.l>.00001) "Value of auxiliary LP positive, so LP infeas»
 ible";
 5 0 2 display "Auxiliary LP solved";
 5 0 3 display mobj.l;
 5 0 4 display slc1.l;
 5 0 5 display slk1.l;
 5 0 6 elseif (phase = 2 and submax < 0.00001),
 5 0 7 display "Master LP solved";
 5 0 8 done = 1;
 5 0 9);
 5 1 0 display submax;
 5 1 1 abort$(ord(slab)=card(slab)) "D-W algorithm did not converge"
 5 1 2);
 5 1 3
 5 1 4 * Store the values of the multipliers to the master problem, so they can
 5 1 5 * be used to calculate prices. Do not index by
 5 1 6 * slab because we are only interested in these variables at the optimum.
 5 1 7 presk = masresk.m; presc = masresc.m;
 5 1 8 pmc(th) = masmeas.m(th);
 5 1 9
 5 2 0 ***
 5 2 1 * PART V- WRITE SOLUTION TO TEXT FILE
 5 2 2 *
 5 2 3 * Generate solution by solving appropriate subprograms
 5 2 4 * and write solution to a text file.
 5 2 5
 5 2 6 put mfile;
 5 2 7 put "PARETO OPTIMUM AND SUPPORTING PRICES AND INCOMES":<>80 //;
 5 2 8 put "Values of parameters" /;
 5 2 9 put "--------------------" /;
 5 3 0 put "Aggregate capital endowment: ", kappa:<4:2 /;
 5 3 1 put "Fraction of agents that are type-1: ", alp("1"):<4:2 /;
 5 3 2 put "Fraction of agents that are type-2: ", alp("2"):<4:2 /;
 5 3 3 put "Pareto weight on type-1 agents: ", lam("1"):<4:2 /;
 5 3 4 put "Pareto weight on type-2 agents: ", lam("2"):<4:2 /;
 5 3 5
 5 3 6 put ///;
 5 3 7 put "SOLUTION TO PARETO PROGRAM":<>54 /
 5 3 8 "Reported as different basic feasible solutions":<>54 /
 5 3 9 "--":<>54 /;
 5 4 0 put /;
 5 4 1
 5 4 2 count1 = 1; count2 = 1;
 5 4 3 * Total utility of each agent is calculated by determining the
 5 4 4 * contribution to an agent's total utility from each subproblem solution
 5 4 5 * that is part of the master program solution. Consequently, we start the
 5 4 6 * utilities at a value of zero and then sequentially add each
 5 4 7 * contribution.
 5 4 8 autil1 = 0; autil2 = 0;
 5 4 9
 5 5 0 * Now resolve appropriate subproblems to generate the solution and the
 5 5 1 * write the solution to the output file.
 5 5 2 autil1 = mm1("2"); display autil1; autil2 = mm2("2"); display autil2;
 5 5 3 autil1 = 0; autil2 = 0;
 5 5 4 loop((thi,thr),
 5 5 5 loop(slab$(mprob.l(thr,thi,slab)>0),
 5 5 6 display$(aux(slab) = 1) "Solution includes point from aux lp";
 5 5 7 * Recover the values of the dual variables and Pareto weights
 5 5 8 * corresponding to slab.
 5 5 9 lamw = lam(thr); muc = mmc(slab); muk = mmk(slab);
 5 6 0 if ((ord(thr)=1), muw = mm1(slab);
 5 6 1 else muw = mm2(slab););
 5 6 2 if ((th1(thi)=1), mus = mm1(slab); lams = lam("1");
 5 6 3 elseif (th1(thi)=2), mus = mm2(slab); lams = lam("2"););

 5 6 4
 5 6 5 * Check to see if is a SE club. If so, resolve the subproblem,
 5 6 6 * write the solution to the output file, update utilities, and
 5 6 7 * calculate prices.
 5 6 8 if (se(thr,thi),
 5 6 9 if (aux(slab)=1,
 5 7 0 solve sub1ph1 using lp maximizing obj1;
 5 7 1 abort$(sub1ph1.modelstat=4) "SE subproblem infeasible";
 5 7 2 abort$(sub1ph1.modelstat<>1) "SE subproblem not solved to op»
 timum";
 5 7 3 else
 5 7 4 solve sub1 using lp maximizing obj1;
 5 7 5 abort$(sub1.modelstat=4) "SE subproblem infeasible";
 5 7 6 abort$(sub1.modelstat<>1) "SE subproblem not solved to optim»
 um";
 5 7 7);
 5 7 8 * Update agent's utility
 5 7 9 if ((ord(thr)=1),
 5 8 0 autil1 = autil1 + mprob.l(thr,thi,slab)*utils1.l/alp(thr»
);
 5 8 1 else
 5 8 2 autil2 = autil2 + mprob.l(thr,thi,slab)*utils1.l/alp(thr»
);
 5 8 3);
 5 8 4 prices(thr,thi,slab,"1") = (lam(thr)*utils1.l-pmc(thr))/presk;
 5 8 5 voffirm(thr,thi,slab) = (resc1.l*presc+resk1.l*presk)/presk;
 5 8 6 * Theory says the following expression should equal zero.
 5 8 7 * Abort if it doesn't
 5 8 8 gap = prices(thr,thi,slab,"1")-voffirm(thr,thi,slab);
 5 8 9 abort$(gap>0.000001 or gap<-0.000001) "Problem with SE prices"
 5 9 0 * Write the solution to the output file
 5 9 1 put "Self-employment club number ", count1:1:0 /
 5 9 2 "Club type is (", th0(thr):1:0, ",0)" /
 5 9 3 "The number of these clubs is ", mprob.l(thr,thi,slab):<4:»
 3 /;
 5 9 4 put "probability c q a k " /;
 5 9 5 loop((c,q,a,k)$(pi1.l(c,q,a,k)>0),
 5 9 6 put pi1.l(c,q,a,k):<>12:3, c0(c):8:2, q0(q):8:1,
 5 9 7 a0(a):8:1, k0(k):8:1 /;
 5 9 8);
 5 9 9 put /;
 6 0 0 count1 = count1 + 1;
 6 0 1 * For SW clubs, solve the subproblem, write the solution to the out»
 put
 6 0 2 * file, and calculate the prices.
 6 0 3 else
 6 0 4 if (aux(slab)=1,
 6 0 5 solve sub2ph1 using lp maximizing obj2;
 6 0 6 abort$(sub2ph1.modelstat=4) "SW subproblem infeasible";
 6 0 7 abort$(sub2ph1.modelstat<>1) "SW subproblem not solved to opt»
 imum";
 6 0 8 else
 6 0 9 solve sub2 using lp maximizing obj2;
 6 1 0 abort$(sub2.modelstat=4) "SW subproblem infeasible";
 6 1 1 abort$(sub2.modelstat<>1) "SW subproblem not solved to optimu»
 m";
 6 1 2);
 6 1 3 * Calculate prices and update agents' utilities
 6 1 4 prices(thr,thi,slab,"1") =
 6 1 5 (lam(thr)*utilsw2.l-pmc(thr))/presk;
 6 1 6 if ((ord(thr)=1),
 6 1 7 autil1 = autil1 + mprob.l(thr,thi,slab)*utilsw2.l/alp(»
 thr);
 6 1 8 else

 6 1 9 autil2 = autil2 + mprob.l(thr,thi,slab)*utilsw2.l/alp(»
 thr);
 6 2 0);
 6 2 1 if ((th1(thi)=1),
 6 2 2 autil1 = autil1 + mprob.l(thr,thi,slab)*utilss2.l/alp("1»
 ");
 6 2 3 prices(thr,thi,slab,"2") =
 6 2 4 (lam("1")*utilss2.l-pmc("1"))/presk;
 6 2 5 elseif (th1(thi)=2),
 6 2 6 autil2 = autil2 + mprob.l(thr,thi,slab)*utilss2.l/alp("2»
 ");
 6 2 7 prices(thr,thi,slab,"2") =
 6 2 8 (lam("2")*utilss2.l-pmc("2"))/presk;
 6 2 9);
 6 3 0 voffirm(thr,thi,slab) = (resc2.l*presc+resk2.l*presk)/presk;
 6 3 1 * Theory says the following expression should equal zero.
 6 3 2 * Abort if it doesn't
 6 3 3 gap = prices(thr,thi,slab,"1")+prices(thr,thi,slab,"2")
 6 3 4 -voffirm(thr,thi,slab);
 6 3 5 abort$(gap>0.000001 or gap<-0.000001) "Problem with SW prices"
 6 3 6 * Write the solution to the output file
 6 3 7 put "Supervisor-Worker club number ", count2:1:0 /
 6 3 8 "Club type is (", th0(thr):1:0, ",", th1(thi):1:0,")" /
 6 3 9 "The number of these clubs is ", mprob.l(thr,thi,slab):<4:3»
 /;
 6 4 0 put "probability cw cs q a k " /»
 ;
 6 4 1 loop((cw,cs,q,a,k)$(pi2.l(cw,cs,q,a,k)>0),
 6 4 2 put pi2.l(cw,cs,q,a,k):<>12:3, c0(cw):<>8:2, c0(cs):<>8:2,
 6 4 3 q0(q):<>8:1,a0(a):<>8:1, k0(k):<>8:1 /;
 6 4 4);
 6 4 5 put /;
 6 4 6 count2 = count2 + 1;
 6 4 7 * sumsw indicates whether a particular type of s-w firm exists
 6 4 8 * if a (1,1) firm exists then sumsw(ipw,ik,1) = 1 and 0 otherwise
 6 4 9 * if a (1,2) firm exists then sumsw(ipw,ik,2) = 1
 6 5 0 * if a (2,1) firm exists then sumsw(ipw,ik,3) = 1
 6 5 1 * if a (2,2) firm exists then sumsw(ipw,ik,4) = 1
 6 5 2 if ((th0(thr)=1 and th1(thi)=1),
 6 5 3 sumsw(ipw,ik,"1") = 1;
 6 5 4 elseif (th0(thr)=1 and th1(thi)=2),
 6 5 5 sumsw(ipw,ik,"2") = 1;
 6 5 6 elseif (th0(thr)=2 and th1(thi)=1),
 6 5 7 sumsw(ipw,ik,"3") = 1;
 6 5 8 elseif (th0(thr)=2 and th1(thi)=2),
 6 5 9 sumsw(ipw,ik,"4") = 1;
 6 6 0);
 6 6 1);
 6 6 2);
 6 6 3);
 6 6 4 put "Summary of club distribution (order is same as above)" /;
 6 6 5 put "Number of clubs Membership" /;
 6 6 6 * Important: this loop must be the same as the one above so that the orde»
 r
 6 6 7 * is the same
 6 6 8 loop((thi,thr),
 6 6 9 loop(slab$(mprob.l(thr,thi,slab)>0),
 6 7 0 zs = ord(thi)-1;
 6 7 1 put mprob.l(thr,thi,slab):<>16:3, " (",ord(thr):1:0,","zs:1:0,"»
)" /;
 6 7 2);
 6 7 3);
 6 7 4 put #69;
 6 7 5

 6 7 6 pk = presk/presk;
 6 7 7 * Now write decentralization info to output file.
 6 7 8 put ////;
 6 7 9 put "DECENTRALIZATION THAT SUPPORTS THE ABOVE PARETO OPTIMUM":<>64 /
 6 8 0 "---":<>64 //;
 6 8 1 put "Prices:" /;
 6 8 2 put " capital ", pk:<>4:3 /;
 6 8 3 count1 = 0; count2 = 0;
 6 8 4 loop((thi,thr),
 6 8 5 loop(slab$(mprob.l(thr,thi,slab)>0),
 6 8 6 zs = ord(thi)-1;
 6 8 7 if ((th1(thi)=0 and count1=0),
 6 8 8 put " self-employment clubs number worker value of »
 firm" /;
 6 8 9 count1 = count1+1;
 6 9 0);
 6 9 1 if ((th1(thi)=0 and count1>0),
 6 9 2 put " ",
 6 9 3 count1:<>6:0, prices(thr,thi,slab,"1"):<>6:3,
 6 9 4 voffirm(thr,thi,slab):>19:3 /;
 6 9 5 count1 = count1+1;
 6 9 6);
 6 9 7 if ((th1(thi)>0 and count2=0),
 6 9 8 put " supervisor-worker clubs number worker super. value of »
 firm" /;
 6 9 9 count2 = count2+1;
 7 0 0);
 7 0 1 if ((th1(thi)>0 and count2>0),
 7 0 2 put " ", count2:<>6:0,
 7 0 3 prices(thr,thi,slab,"1"):<>6:3, prices(thr,thi,slab,"2"):<>9:3,
 7 0 4 voffirm(thr,thi,slab):<>16:3 /»
 ;
 7 0 5 count2 = count2+1;
 7 0 6);
 7 0 7);
 7 0 8);
 7 0 9 put /;
 7 1 0 put "Resource constraint multipliers are mu_(c-q) = ", presc:<5:3,
 7 1 1 ", mu_k = ",presk:<5:3 /;
 7 1 2 put /;
 7 1 3 expenditures(thr) = 0;
 7 1 4 expenditures(thr) = sum((thi,slab),
 7 1 5 mprob.l(thr,thi,slab)*prices(thr,thi,slab,"1"));
 7 1 6 expenditures("1") = expenditures("1")
 7 1 7 +sum((thr,slab),mprob.l(thr,"1",slab)*prices(thr,"1",slab,»
 "2"));
 7 1 8 expenditures("2") = expenditures("2")
 7 1 9 +sum((thr,slab),mprob.l(thr,"2",slab)*prices(thr,"2",slab,»
 "2"));
 7 2 0 expper(th) =expenditures(th)/alp(th);
 7 2 1 put "Expenditures: TOTAL PER CAPITA" /;
 7 2 2 put " type-1 ", expenditures("1"):<>12:3, expper("1"):<>»
 16:3 /;
 7 2 3 put " type-2 ", expenditures("2"):<>12:3, expper("2"):<>»
 16:3 /;
 7 2 4 put " Entire Population ", (expenditures("1")+expenditures("2")):<>»
 12:3 /;
 7 2 5
 7 2 6 put /;
 7 2 7 put "Endowments of Capital: TOTAL PER CAPITA" /;
 7 2 8 put " type-1 ", expenditures("1"):<>12:3, expper("1"):<>»
 16:3 /;
 7 2 9 put " type-2 ", expenditures("2"):<>12:3, expper("2"):<>»
 16:3 /;

 7 3 0 put " Entire Population ", (expenditures("1")+expenditures("2")):<>»
 12:3 /;
 7 3 1 put /;
 7 3 2 put "Utility of type-1 = ", autil1:<6:4 /;
 7 3 3 put "Utility of type-2 = ", autil2:<6:4 /;
 7 3 4
 7 3 5 putpage mfile;
 7 3 6
 7 3 7 * Finish the Pareto weight and capital endowment loops.
 7 3 8);
 7 3 9);
 7 4 0 * Write the types of supervisor worker firms as a function of the
 7 4 1 * pareto weights and capital endowment to a file for graphing purposes;
 7 4 2 put mfile2;
 7 4 3 loop(ipw,
 7 4 4 put "pw(", ord(ipw), ") = ",ParW(ipw), ";" /;
 7 4 5);
 7 4 6 loop(ik,
 7 4 7 put "kap(", ord(ik), ") = ", kap(ik), ";" /;
 7 4 8);
 7 4 9 loop((ipw,ik,j),
 7 5 0 put "sumsw(", ord(ipw), ",", ord(ik), ",", ord(j), ") = ",
 7 5 1 sumsw(ipw,ik,j), ";" /;
 7 5 2);

