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1 The Model

The general model takes the following form:

Ci;7—1
max Etz Bt Z ( — - qujt)
Jj=

subject to

jt+zszt+Zijt jt7

Kjipn = Zj + (1 — 0) K, (1)
thznﬁvl zgt’ ZQU =1 (2)
Yio = Ap KN MY L0750

In each sector j, the production of final goods takes place using as materials the amount M,;;;
of output produced in sector 7. In addition, investment goods in sector j, Z;;, are produced
using the amount X,;; of output produced in sector .

An input-output matrix for this economy is an N x N matrix [' with typical element,
7,;> the share of sector 7 in the output of sector j. A sectoral investment matrix is an N x N
matrix © with typical element, 0;;, the share of sector 7 in total investment made by sector
Jj.

The first-order necessary conditions are:

Cie = O = A,
N
Y.
Ly = = Ath—],t (1 — ;= Z%j)
st i=1

Combining these 2 equations gives

N
e YLj = CyYy (1 S Z%’j) : (3)
i=1

Y;

Mije = Nig )\gt%j ]W]t
15t
or
_ Y:
Mijt : Cz't - C]t Vij ]\jtt' (4)
4
Xijt : )\zt M]tez] tht (5)
ij



where f1;, is the Lagrange multiplier associated with the capital accumulation equation in

sector j, equation (1).

Y.
Kjin : e = BAjey1aj (K?le) + ﬂﬂjtﬂ(l —0). (6)
j

Thus, the basic equations of the model, equations (3) through (6) along with the capital
accumulation equation and the 2 production functions, represent a set of 6N +2N? equations,
where 6N 4+ 2N? = 28080 when N = 117. For this reason, it is helpful to reduce the system
analytically if possible.

2 Finding the Steady State Analytically

Some key steady state equations are:

N
VL = A (1 — oy = Z%’j) Yj, (7)
=1

s

Mij = lefyijlfja (8)
/J,.
Xy = 04Z;, (9)
1-— 5(1 — 5) Y,

[ S [ WA 11
i { By } ’ (Kj) ’ (1
z; = I, X7, (12)

Let y denote the log of variable Y. Further, let 2 = (zq,...,2x5)%, [ = (Iy, ..., Ix)7T, etc.,

T

_ _ T
m = (mllam12a---7m1Nam21am22a---7mNN) and x = (9511,3512,--->$1N7$21,$22,---,»’UNN) .

Using this notation, we can write equation (9) as follows,
Ty =Inp; —In\; + In6;; + z;,

or, in vector form,
x=M,Inp— MyIn\+ M,z + vec (lnG)T) , (14)

where M, = M, = 1yx1 ® Iy and M,) = Iy ® 1yx;. Equation (12) implies that

2 = O, (15)



where

[0, 0 ... O,y O ... Oy O ..
0 912 0 022 0 91\]2 0
@NXNZ = 813 023 9N3
| 91]\7 0 92]\[ HNN |

Substituting equation (14) into (15) gives

z = (:)Mu Inp — (:)Mx,\ In X+ éMzz + Ovec (ln @T) ,

or
(Iy — éMz)z = éMu Inp — (:)Mm,\ In \ + Ovec (ln @T) ,
%)
where
>0
- 0,
oM, = 2.0 = Iy,
Zi Oin
and
01 0O ... O
~ 0 O ... 0
&M, — 12 U2 N2 | or
Oy Oan ... Onn
so that
Inp=0"In\— Ovec (no”). (16)

From the Euler equation in the steady state (11), we have

Ba
or

k=InA—lnp+y—In {w],

Ba
where « is a vector with values «; and the expression in square brackets is understood to be

an element by element operation. Substituting equation (16) into this last equation gives

l—ﬁﬂ—ﬁ}

k:dnA—@TmA+émen@ﬁ4ﬂr—m{ 5
«

or

k= (Iy—6")InA+y+C, (17)

4



where

~ 1— B3(1 —
Cy = Ovec (ln @T) —In [%] )
From the labor supply equation (7), we have
l=—InY+InA+y+InC, (18)
where
Cr=® x Iyx,

(I) = ([N—de—z,y),
where a4 is a diagonal matrix with the values a; on the diagonal, and

Z’i Vi1
> Zz Yi2

> VN
From the materials equation (8), we have
mi; =InAj —In X\ + Invy,; + 5,

or, in vector form,
m = MyzIn X+ M,y + vec(InT'7), (19)

where Mm)\ = ]_le & [N - [N & ]_le and My = 1N><1 & IN-
We are now ready to solve for the multipliers, A, in closed form as functions the structural

parameters of the model only. From the definition of sectoral production (13), we have

y:a—i—ozdk—i—fm—l—fbl,

where ) -
Y1 0 O O N o Y1 O
N 0 v 0 o 79 0 . 9y2 O
Inwne = Y13 Vo3 YN3
B Yiv 0 o YaN INN

Substituting equations (17), (18), and (19) in this last expression gives

y = a+ag[(Iy—O0")InA+y+ Oy
T [Myx In X + M,y + vec(InT7)]
+®[—Iny +In A +y+ InCj]

bt



or

I —aq— fMy —®ly = a+ agCl+Ivec(Inl'") — ®lnep + ®InC

%)

+(ag(Iy — OT) + T M) + @) In A

so that

I\ = —(aq(Iy — OT) + TMys + @)~ 'a + @qCy + Dvec(InT7) — @Inep + &I C),  (20)

and A = e™*. This allows us to directly solve for consumption, C' = A"7. We can also solve
for p1 using equation (16),
Inp=06"In\— Ovec (ln @T) .

To solve for output in the steady state, we first use the resource constraint,

A7+ MY + M. Z =Y, (21)
where

T ’Ymi_f ’YlNA—]f 911’1—1 912/;—? 91N’i—1¥
Yaxe Va2 o Tani 05t 02 ... On5Y
My = A2 A2 and M,, = A2 A2 A2
’YN1,(\_]1V ”YNQ,(\_IQV -~ INN 9N1% 9N2f—fv GNNI;_x

Now, Z = §K and from (17),

Cop, 0 .. 0
K _ e(IN_eT)ln)\“l‘y“l‘Ck _ 0 Cexp2 0 Y
0 0 ... Cepy
Cg{p

where Ciyp, is the i element of the vector eN=0")1mA*+Ck and In \ is given by (20). Substi-

tuting these expressions into (21) gives

A7 4 MY + 6M,.CoyY =Y,

so that
Y = (I — Myy — 6M,.Coyp) " A7 (22)

From here, solving for the remaining variables in the steady state is straightforward.



3 Dynamics of the System

The model solution is described by a set of 6N + 2N? equations. The following sections
describe these equations and outlines an analytical system reduction to 2N equations. The

basic equations of the system are:

N
YLj = C;° Y (1 —Q; — Z%j) :
i=1

—0 —0 Yy
Cy” = Cjt ”Yij_Mijt,
7.
Aig = theij_Ja

ijt

where \;; = C},°.

Y.
fje = BAjircx (Kf;t) + Brjea (1= 9),

N N
Ci + ZMjit + ijit =Yj,
i=1 i=1
Kjt1 = Zjr + (1 = 6) Ky,

gt

N
Qij
Zyp =T, X0, > 05 =1,
=1

o Vi 1_a_21\’: Vi
Vi = Ap KT MY L =

ijt 4t

4 Log-linearized Equations
The “hat” notation stands for percent deviation from steady state.

th = —aajt + ?jt,
—a@t = —o@t + ?jt - ]\th
//\\it = ﬁjt + th - )A(ijt
ﬁjt = B/)‘\jt-i-l + B?jtﬂ - El?jtﬂ +6(1 - 5)ﬁﬁ+1’

where B =1-p6(1-9),

N N
Scj Ci + Z SMjisz‘t + Z Sinint = Y,
i=1 i=1



Kjir1 = 0Z; + (1 — 8) Ky,

N
Zjr = E 0ij Xijt,
i=1

N N
Y;’t = Ajt —+ ajKjt + Z’yijMijt + (1 - — Z’YU> th-
=1

i=1
Let 2 = (Z Zn)%, 1= (L L), ete., m :(]\/4\ M, My, Moy, M-
t 1ty -+ &4Nt) 5 Ut 1ty ---» L“Nt) > 9 t 11¢t, 12ty -++» 1INt 21ty 22t
—_~ T o A~ N AN AN AN AN T . . .
oy M)t and @y = (Xa14, Xaot, oo Xanve, Xo1g, Xoot, oo, Xvne)' - Given this notation, we can

express the log-linearized equations as follows:
lt = —0¢ + Yt (23)

my = Myy; + Mecy, (24)

where M, = 1y ® Iy and M. = 0(In ® Inx1) — 0(1nx1 @ In).
Ty = M“,U/t — Mx)\>\t + Mzzt, (25)
where M, = M, = Inx1 @ Iy and M,y = Iy @ 1yx1.

My = B)\t+1 + Byt+1 — Bk’tﬂ + B(1 = 0)py 41, (26)

where the Fy(.) operator is understood to apply to the forward variables.

Seer + Spmy + Sy = Yy, (27)
where
[ Se, Sy, Say . 0 0
S. = , Sm = )
i Scy 0 0 SMiyn-1 SMyx
[ Sxi Sxis 0 0
and S, =
| 0 o 0o Sxyna Sxaw
kiv1 =0z + (1 — 6)ky, (28)
% = Oy, (29)

where O is defined as in section 2.
Y = ap + gk + fmt + &Ly, (30)

where I’ and ® are defined as in section 2.



5 System Reduction

The objective of this section is to reduce the system of 6N + 2N? log-linear equations

described in the previous section to one with a set of N flows (consumption), N states,

(capital), and N driving processes (productivity).
Substitute equation (25) into (29) to get

2 = OMp1, — OMpp A + OM, 2,

or
OM, 1, = OM o\,

(since I — OM, = 0) which gives alternatively
e = @T)‘ta

(since é]\/[u = Iy and OM,, = o7).

Now, substitute equation (31) into the linearized Euler equation, (26),
0"\ = B)\tﬂ + Bytﬂ — Bk + B —8)O0" A\,
or
0"\ = (5 +B8(1 - 5)@T> A1+ BYe1 — Bl
Since \; = —o¢;, this last expression becomes
—J@Tct = —0 <B + ﬁ(l — (5)@T> Cey1 + BytJrl - Bkt+1-

From equations (23), (24), and (30), we have

(I — fMy — D)y, = ap + agky + (fMC —o®)¢y
%) c

or, equivalently,
Y = a;lat + ky + ongcct.

Substitute this last expression into the Euler equation (32) to get

—00%¢; = —0o <B + B(1 - 5)@T> Cty1 + 5[04;1%“ + k1 + 0 Qecria] — Bkt—f—h

. —00T¢, = [—0 (g +6(1 - 5)@T> + Eaf@c} cer1 + Bagtas,

(31)

(32)

(33)



which is our first equation in a system that involves only consumption, capital, and the
exogenous shocks.

To obtain the second equation, we re-write the resource constraint,
ScCt + Sm (Myyt + Mcct) + Sx (Mu,ut — Mx)\)\t + Mzzt> = Y. (35)
Recall that p, = ©7); in (31) so that M, u, — My = (M,07 — M)A\ = —o(M,07 —
M_»)c;. Moreover, from (28), we have z, = 2 — U9 Tt follows that (35) becomes

1 1
S, M, Sy M, (1—90
Scct + Sm (Myyt + Mcct) — USQ;(MM@T — Mx)\)ct + 5 kt+1 — #

kt = Yt

o
or
Sy M, SeM.(1 -9
(I = SpnMy)y: = [Sc + S M. — USx(Mu@T - Mx)\)] Ct + TktJrl - #kt-
Recall that y; = oglat + k + a;chct from (33). Therefore, we have
(I — SmMy) [Oéglat + ke + OKEIQCCt}
Sy M, SeM (1 -6
== [Sc + S’rnMc - USQ;(MM@T — Ma;)\)] Ct -+ kt+1 — #kt
or
Sy M,
5 ki1
= [(I - SuMy)a;'Q.— S, — SuM, + 0S,(M,0" — M,,)] ¢,
SeM (1 -6
[r- suan+ SN,
+(I — SmMy)aglat, (36)
which is the second equation of our system.
We summarize equations (34) and (36) as follows:
[ o (B +801 - 5)@T) +Ba;'Q., 0 5| o
t
i 0, % Kyt
B [ —O'@T, 0 Cy
| (U= SnMy)ag Qe — Se — SpMe + 08, (MO — Myy), I — S, M, + 2020 ] ),
0 —Ba;l
+ a; + Ei(aiq). 37
st | ) "

At this stage, the dynamics of the system can be solved using standard linear rational
expectations toolkits as described in Blanchard and Khan (1980), King, Plosser, Rebelo
(1998), and Klein (2000). Our calculations are based on the algorithms described in King
and Watson (2002).
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6 Solution and Policy Functions

The policy functions associated with (37) take the form:

[ C1t | [ 171 klt ]
CNt _ th
ko 1 0 0 0 ou |

| ke | 0 1 0 0| | one |

T

a 0 .. 010

1t - Fx

Ry — e e 5 9
ant 0 .. 00 .. 1 1

. | Ont |

and ~ _ _ _
klt—i—l klt

+ Hegyq.

th—i—l Mk Ma th
0 1

51t+1

L 5Nt+1 i 6Nt

More generally, we can write these equations as follows:

M

Hck Hca
1 0

ks
5 |’

Mk: Ma kt
0 I

kevr |
duin |
7 Obtaining the Model Filter

Since we assume that the logarithm of sectoral productivity follows a random walk, Q) = [

in the procedure governing the driving process (i.e. drp.gss) of King and Watson (2002).
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Therefore, we have
ki1 = Mk + Maay,

and
G = Hckkt + Hcaat-

Recall from equation (33) that

Yy = aglat + Kk + ongcct.

Therefore,
Yo = Oéglat + kt + ac?ch[Hckkt + Hcaat]
= \a;l [[ + Qchalat + \[[ + angchk]kt
i .
so that

ke = O,y — 1O, M,y

Using these equations, we have that

Yey1 = gk +1gai0
= Hk(Mkkt + MaCLt) + Ha(lt+1
= L Mi(IT; e — 10 ' Taar) + T Maay + Taazs

or

Yiy1 = {IkMkH;iyt + }_[k(Ma - MkHEIHa)J@t + aapyq.
? TV
Under the assumptions made in the paper regarding the process for a;, it follows that

(1

Ayip1 = 0Ay; + Zey + Mg,
so that the filtering is carried out according to
Etr1 = HglAyH_l — H;lgAyt — H;lE&?t. (38)

where ¢( is set to zero. In order that the implied sectoral productivity growth rates be
stationary, the filtering process (38) must satisfy the condition that the roots of |I —IT;'=z]
lie outside the unit circle.
Let
N1 = Zee + Ilaerp,
Then, if var(e;) = 1,
¥, = E2 + ILIL.
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