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1 Introduction

The Federal Reserve Board’s Index of Industrial Production (IP) is an important indicator

of aggregate economy activity in the United States. Month-to-month and quarter-to-quarter

variations in the index are large. Monthly and quarterly growth rates for the seasonally

adjusted IP index over 1972-2007 are plotted in Figure 1. Over this sample period, the

standard deviation of monthly growth rates was over eight percentage points (at an annual

rate), and quarterly growth rates had a standard deviation of nearly six percentage points.

Also evident in the figure is the large fall in volatility associated with the Great Moderation;

the standard deviation in the post-84 period is roughly half its pre-84 value for both the

monthly and quarterly series.

Because the IP index is constructed as a weighted average of production indices for a large

number of sectors, the large volatility in the IP index is somewhat puzzling. Simply put,

while production in an individual sector (e.g. “Motor Vehicle Parts”) may vary substantially

from month-to-month or quarter-to-quarter, apparently much of this variability does not

“average out” in the index of economy-wide production. There are three leading explanations

for this observation. The first relies on aggregate shocks that affect all industrial sectors.

Since these shocks are common across sectors, they do not average out and become the

dominant source of variation in aggregate economic activity. The two other explanations

rely on uncorrelated sector-specific shocks. First, Gabaix (2005) notes that sector-specific

shocks may not necessarily average out when some of these sectors have large weights in the

aggregate index. Second, complementarities in production such as input-output linkages may

propagate sector-specific shocks throughout the economy in a way that generates substantial

aggregate variability.

The literature analyzing sector-specific versus aggregate sources of variations in the busi-

ness cycle has followed two main approaches. Long and Plosser (1987), Forni and Reichlin

(1998), and Shea (2002) among others rely on factor analytic methods, coupled with broad

identifying restrictions, to assess the relative contributions of aggregate and sector-specific

shocks to aggregate variability. These papers generally find that sector-specific shocks con-

tribute a non-trivial fraction of aggregate fluctuations (e.g. approximately 50 percent in

Long and Plosser (1987)). A second strand of literature is rooted in more structural cali-

brated multisector models, such as Long and Plosser (1983) or Horvath (1998, 2000), that

explicitly take into account input-output linkages across sectors. In these models, whether

input-output linkages are sufficiently strong to generate substantial aggregate variability
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from sector-specific shocks depends on the exact structure of the input-output matrix.1

This paper bridges these two approaches and sorts through the leading explanations

underlying both the volatility of IP and its decline in the post-1984 period. In particular,

it describes conditions under which neoclassical multisector models that explicitly consider

input-output linkages, such as those of Long and Plosser (1983) or Horvath (1998), produce

an approximate factor model as a reduced form. Aggregate shocks to sectoral productivity

emerge as the common output factors in the approximate factor model. The “uniquenesses”

in the factor model are associated with sector-specific shocks. However, because input-output

linkages induce some correlation across the “uniquenesses”, the estimated factors may be

biased and reflect not only aggregate shocks but also idiosyncratic shocks that propagate

across sectors by way of these input-output linkages.

Ultimately, our analysis suggests that sectoral weights play little role in explaining the

variability of the aggregate IP index. As in Shea (2002), aggregate variability is driven mainly

by covariability across sectors and not sector-specific variability. In addition, consistent with

Quah and Sargent (1993), who study comovement in employment across 60 industries, and

Forni and Reichlin (1998), who study annual U.S. output and productivity data over 1958-

1986, we find that much of the covariability in sectoral production can be explained by a

small number of common factors. These common factors are the leading source of variation

in the IP index, and a decrease in the variability of these common factors drives the post-1984

decline in aggregate volatility.

Because common factors may reflect not only aggregate shocks but also the propagation

of sectoral shocks by way of input-output linkages, we draw on a generalized version of the

multisector growth model introduced in Horvath (1998) to filter out the effects of those

linkages. Using input-output matrices calibrated to the U.S. production sector, we find that

sectoral shocks generally play a modest role in the variability of aggregate IP. That said, the

relative importance of these shocks more than doubles in the post-1984 period. Specifically,

while sectoral shocks account for roughly 12 percent of the volatility of aggregate IP prior

to 1984, they account for about 30 percent of IP fluctuations after the onset of the Great

Moderation. Moreover, our analysis suggests that changes in the structure of the U.S. input-

output matrix have not lead to greater propagation of sector-specific shocks in the post-1984

period. Rather, given that the magnitude of sectoral shocks is roughly unchanged before and

after 1984, the increase in the relative importance of these shocks follows from a decrease in

the contribution of aggregate shocks to the variability of aggregate IP.
1See Dupor (1999), and more generally Carvalho (2007).
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This paper is organized as follows. Section 2 introduces the sectoral data, and studies

the role of sectoral weights and sector-specific variation in explaining the variability of the

aggregate IP index. Section 3 asks whether the covariability across sectors can be explained

by a small number of common factors, and quantifies the role that these common shocks

play in the variability of the IP index. In section 4, we show that a generalized version of

the multisector growth model introduced by Horvath (1998) admits an approximate factor

model as a reduced form. We then calibrate the model using input-output matrices for the

U.S. production sector to construct a model-based filter that eliminates the effects of input-

output linkages. This allows us to isolate the effects of aggregate productivity shocks from

the common factors estimated in section 3. Section 5 offers concluding remarks.

2 A First Look at the Sectoral Data

2.1 Overview of the Data

The analysis uses data on Industrial Production over the period 1972-2007 obtained from

the Board of Governors, and Benchmark Input-Output tables provided by the Bureau of

Economic Analysis (BEA). Benchmark input-output tables are available only every five

years, but provide a greater level of disaggregation relative to tables that are available in

non-benchmark years. For most of the paper, IP data is disaggregated by sectors according

to the North American Industry Classification System (NAICS). The raw data are indices of

real output, from which we compute sectoral growth rates as well as the relative importance

(or shares) of industries in aggregate IP. The “Use Table” measures the value of inputs in

producer prices, given by commodity codes, used by each industry, given by industry codes,

as well as payments to labor and capital. To account for possible low frequency changes

in the structure of input-output linkages across sectors, we consider two benchmark years,

1977 and 1997. Because NAICS definitions are relatively recent and cannot be matched

to input-output tables prior to 1997, we also make use of vintage IP data covering the

period 1967-2002. The vintage IP data are disaggregated according to Standard Industry

Classification (SIC) codes, and discontinued after 2002. A detailed description of the data

is provided in Appendix A, and their main properties are described in Table A1.

Let IPt denote the value of the aggregate IP index at date t, and IPit the index for the i0th

sector. These indices are available monthly. Quarterly values of the indices are constructed

as averages of the months in the quarter. Growth rates (in percentage points) are denoted

by gt for aggregate IP and xit for sectoral IP. We compute gt as 1200 × ln(IPt/IPt−1) and

4



400 × ln(IPt/IPt−1) for monthly and quarterly frequencies respectively, and compute xit
similarly.

2.2 Sectoral Summary statistics

Figure 2 shows the distributions of standard deviations of both monthly and quarterly sec-

toral growth rates over the sample periods 1972-1983 and 1984-2007. In computing these

distributions, IP is broken down into 117 sectors that correspond roughly to a four digit

level of disaggregation. Monthly growth rates are volatile and fell only slightly during the

second period (the median standard deviation fell from 30 percent in the first period to 25

percent in the second period). Quarterly averaging reduces the volatility of sectoral output

growth, and a fall in the volatility of sectoral quarterly growth rates is evident after 1984.

Table 1 summarizes the contemporaneous cross-correlation of the sectoral growth rates. Av-

erage pairwise correlations are positive, lower for the monthly data than the quarterly data,

and lower in the second sample period than in the first. Looking at the extremes in the

table, quarterly growth rates were relatively highly correlated in the first period (the aver-

age correlation was 0.27 over 1972-1983), while monthly growth rates were relatively weakly

correlated over the second period (the average correlation was 0.05 over 1984-2007).

Let wit denote the share (or weight) of sector’s i production in the aggregate index.

Growth in aggregate IP can then be written as gt =
P

iwitxit. Table 2 follows Shea (2002)

and studies two sources of variation in the aggregate IP index: (i) time variation in the

sectoral shares, wit, used as weights in combining sectoral growth rates to produce aggregate

growth rates, and (ii) the covariance of sectoral growth rates.

Panel (a) of Table 2 shows the standard deviation of gt, the standard deviation of
P

iwixit,

where wi denotes the sample average of wit over the sample period, and the standard de-

viation of N−1P
i xit, where N is the number of sectors. It is apparent that the standard

deviations of gt and
P

iwixit are nearly identical, indicating that time variation in wit is

not an important source of variability in aggregate IP. Moreover, these values are close to

the standard deviation of IP computed using equal share weights, so that the distribution

of shares across sectors is relatively unimportant in this calculation as well. Moreover, be-

cause the variability when using equal weights is somewhat larger than when using wi, larger

sectors have less volatile output growth rates than smaller sectors on average.

Panel (b) considers estimates of the standard deviation of gt that ignore the covariance of

sectoral growth rates. Letting bσ2i denote the sample variance in xit, the first entry in panel (b)
shows [

P
i bσ2i (T−1Ptw

2
it)]

1/2, the second entry shows [
P

i bσ2iwi2]1/2, and the last entry shows
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[
P

i bσ2iN−2]1/2. Again all values are similar, suggesting that neither time variation in wit nor

distributional concerns are important in these calculations. More importantly, the entries in

panel (b) are markedly smaller than those in panel (a). Evidently, as stressed by Shea (2002),

most of the variance in aggregate output growth is associated with the covariance of sectoral

growth rates. If one were to assume that the comovement in sectoral growth rates is driven

by aggregate shocks that are common to all sectors, it would immediately follow from Table

2 that these shocks represent the overriding source of variation in aggregate IP. For example,

using quarterly growth rates and constant mean shares over the sample period 1984-2007,

the fraction of IP growth variability explained by aggregate shocks would be approximately

1 − (1.5/3.6)2 or 0.83. Note, however, that this calculation is only approximate since the
diagonal elements of the covariance matrix used in panel (b) would themselves reflect, in

part, the effects of aggregate shocks. Finally, panels (a) and (b) of Table 2 suggest that the

fall in the volatility of aggregate IP in the post-1984 period is associated mainly with a fall

in the covariability of sectoral growth rates rather than a decline in the variability of output

growth in individual sectors.

To sum up, the results in Table 2 allow us to discount the “large shocks in sectors with

large shares” explanation for the variability of aggregate output. If anything, we find that

on average, larger sectors are associated with lower output growth volatility. In addition,

the variability in aggregate IP is associated with shocks that lead to covariability in sectoral

output, not shocks that lead to large idiosyncratic sectoral variability. The remaining chal-

lenge is to measure and understand the shocks that lead to covariability, and this challenge

is taken up in the next two sections. Throughout the remainder of the paper, the analysis

is carried out using constant mean shares, wi.

3 Statistical Factor Analysis

As discussed in Forni and Reichlin (1998), the approximate factor model is one natural way

to model the covariance matrix of sectoral production. Letting Xt represent the N × 1
vector of sectoral growth rates, this model represents Xt as

Xt = ΛFt + ut (1)

where Ft is a k × 1 vector of latent factors, Λ is an N × k matrix of coefficients called
factor loadings, and ut is an N × 1 vector of sector-specific idiosyncratic disturbances. We
denote the number of time series observations by T . In classical factor analysis (Anderson
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(1984)), Ft and ut are mutually uncorrelated i.i.d. sequences of random variables, and ut
has a diagonal covariance matrix. Thus, Xt is an i.i.d. sequence of random variables with

covariance matrix ΣXX = ΛΣFFΛ
0+Σuu, where ΣFF and Σuu are the covariance matrices of

Ft and ut respectively. Because Σuu is diagonal, any covariance between the elements of Xt
arises from the common factors Ft.

Approximate factor models (e.g. Chamberlain and Rothschild (1983), Connor and Ko-

rackzyk (1986), Forni, Halli, Lippi, and Reichlin (2000), and Stock and Watson (2000)),

weaken these assumptions by (essentially) requiring that key sample moments involving Ft
and ut mimic the behavior of sample moments in classical factor analysis. This allows for

weak cross sectional and temporal dependence in the series, subject to the constraint that

sample averages satisfy laws of large numbers with the same limits as those that would obtain

in classical factor analysis. When N and T are large, as they are in this paper’s application,

the approximate factor model has proved useful because relatively simple methods can be

used for estimation and inference. For example, penalized least squares criteria can be used

to consistently estimate the number of factors (Bai and Ng (2002)), principal components

can be used to consistently estimate factors (Stock and Watson (2000)), and the estimation

error in the estimated factors is sufficiently small that it can be ignored when estimating

variance decompositions or conducting inference about Λ (Stock and Watson (2000), Bai

(2003)).

Tables 3 through 5, as well as Figures 3 and 4, summarize the results from applying

these methods to the data on sectoral IP growth rates. To begin, we estimated the number

of factors using the Bai and Ng (2002) ICP1 and ICP2 estimators. These estimators yielded

2 factors in the full sample period (1972-2007), and first sample period (1972-1983). They

yielded 1 factor in the second sample period (1984-2007)2. The findings shown in Tables 3

through 5 and Figures 3 and 4 are based on estimated 2-factor models. For robustness, we

also carried out our analysis using 1- and 3-factor models. The results (not shown) were

similar to those we report for the 2-factor model.

Given equation (1), we can gauge the importance of common shocks, Ft, relative to the

“uniquenesses,” ut, in two ways. First, we compute the fraction of aggregate IP variability

explained by common shocks, which we denote by R2(F ). In particular, letting w denote the

N × 1 vector of constant mean shares, gt = w0ΛFt +w0ut so that R2(F ) = w0ΛΣFFΛ0w/σ2g,

where σ2g is the variance of IP growth rates. Second, we can also assess the extent to which
2The estimators are based on the eigenvalues of the sample correlation matrix of the data. These are

presented and discussed in Section 4.

7



the common factors explain output growth variability in individual sectors. That is, we can

also compute the distribution of R2 statistics obtained by regressing xit on Ft, which we

denote by R2i (F ).

Table 3 shows the 2-factor model’s implied standard deviation of aggregate IP computed

using constant shares, as well as the fraction of aggregate IP variability explained by the

common factors, R2(F ). The factor model implies an aggregate IP index with volatility that

is essentially identical to that found in the data. Furthermore, the common factors explain

nearly all of the variability in quarterly growth rates of the aggregate IP index over both

sample periods. Common shocks also explain the bulk of the variability in monthly growth

rates over the 1972-1983 period, but only half of the variance of monthly growth rates over

the 1984-2007 period. Figure 3 illustrates aggregate IP growth rates as well as the model’s

fitted values of the factor component. Consistent with the variance decomposition in Table

3, the series track one another closely for the quarterly data. The series also track each other

closely for the monthly data in the early sample period, but less so over the period 1984-

2007. While the factor component tracks low-frequency movements in monthly growth rates

relatively well over this second period, several of the high frequency spikes in the monthly

series are associated with sector-specific shocks.

Because the common factors explain roughly 90 percent of the variability in quarterly

growth rates over both sample periods, they are responsible for 90 percent of the decrease

in aggregate volatility across the two time periods. Similarly, common shocks explain 85

and 50 percent of the variability in monthly growth rates over 1972-1983 and 1984-2007

respectively, and a decrease in the magnitude of these shocks fully explains the decrease in

variability of the monthly series after 1984. Taken together, these findings suggest that the

Great Moderation is explained by a decrease in the variance of the common components of

IP.

At a more disaggregated level, Figure 4 shows the fraction of output growth variability

in individual IP sectors explained by the common factors. Regarding individual monthly

sectoral growth rates, these factors account for only a small fraction of their variability both

before and after 1984. (the median value is 18 percent in the 1972-1983 period and 10 percent

in the 1984-2007 period). In contrast, common shocks play a non-trivial role in driving the

movements of sectoral quarterly growth rates prior to 1984. Specifically, over the first sample

period, common factors explain at least 41 percent of output growth volatility in half of the

sectors, and are the main source of variability in 25 percent of the sectors. Interestingly, the

relative importance of common shocks for the variability of sectoral quarterly growth rates
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falls considerably after the onset of the great moderation. After 1984, the median R2i (F )

statistic is only 19 percent, so that idiosyncratic shocks take on a more prominent role at

the sectoral level over the second sample period.

Surprisingly, while the importance of common shocks for the variability of sectoral quar-

terly growth rates declines after 1984, observe in Figure 4 that these shocks nevertheless

explain a very large fraction of output growth volatility in several individual series in both

sample periods. Table 4 lists the ten sectors with the largest fraction of variability accounted

for by common shocks. Prior to 1984, for example, idiosyncratic shocks played virtually no

role in the variability of output growth in the sectors related to “Fabricated Metals: Forging

and Stamping,” or “Other Fabricated Metal Products”. Furthermore, because the sectors

in Table 4 move mainly with common shocks, and as we have just seen movements in the

aggregate IP index are associated with these shocks, the sectors listed in Table 4 turn out

to be particularly informative about the IP index.

Consider, for instance, the problem of tracking movements in IP in real time using only a

subset M of the IP sectors, say the five highest ranked sectors in Table 5.3 Let eXt represent
the vector of output growth rates associated with these M sectors such that eXt = sXt,

where s is a corresponding M ×N selection matrix. To assess the information content of IP

embodied in those M sectors, weights are simply determined by the orthogonal projection

of gt on eXt, E(w0Xt| eXt) = eXtψ. Specifically, the M × 1 vector of weights ψ is given by

ψ = (sΣXXs
0)−1sΣXXw. Table 5 then shows that estimates of eXtψ computed with only the

five highest ranked sectors in Table 4 are enough to explain the bulk of the variation in IP.

Prior to 1984, these five sectors alone account for 85 percent of the variation in the growth

rate of the aggregate index. In addition, 99 percent of the variability in IP growth rates

is captured by considering only the thirty highest ranked sectors (out of 117) over 1972-

1983. This fraction is somewhat smaller at 90 percent over the Great Moderation period.

In either case, however, it is apparent that information about movements in IP turns out

to be concentrated in a small number of sectors. Contrary to conventional wisdom, these
3IP numbers are typically released with a one month lag, revised up to three months after their initial

release, and further subject to an annual revision. Both to confirm initial releases and to independently track

economic activity, the Institute for Supply Management constructs an index of manufacturing production

based on nationwide surveys. In addition, several Federal Reserve Banks including Dallas, Kansas City, New

York, Philadelphia, and Richmond, produce similar indices that are meant to capture real time changes in

activity at a more regional level. Of course, a central issue pertaining to these surveys is that gathering

information on a large number of sectors in a timely fashion is costly, so that the scope of the surveys is

generally limited.
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sectors are not necessarily those with the largest weights, the most volatile output growth,

nor the most links to other sectors (e.g. Electric Power Generation”). Since aggregate IP is

driven mainly by common shocks, what matters is that those sectors also move with common

shocks. We return to this point in the next section.

What do we learn from these results about the variability of aggregate IP growth rates?

Common shocks largely explain changes in aggregate IP, and a decrease in the volatility of

these shocks explains why aggregate IP is considerably less variable after 1984. In addition,

information about changes in the aggregate IP index is condensed in a small number of

sectors.

4 Structural Factor Analysis

An important assumption underlying the consistent estimation of factors in the previous

section was that the covariance matrix of the uniquenesses, ut, in equation (1) satisfy weak

cross sectional dependence. However, as discussed in Long and Plosser (1983), Horvath

(1998), Carvalho (2007), and elsewhere, input-output linkages between the industrial sectors

may lead to the propagation of sector-specific shocks throughout the economy in a way

that generates comovement across sectors. In other words, these input-output linkages may,

effectively, transform shocks that are specific to particular sectors into common shocks, and

thereby explain in part the variability of aggregate output. As discussed in Horvath (1998)

and Dupor (1999), the strength of this amplification mechanism depends importantly on the

structure of the input-output matrix governing linkages between sectors.

In this section, we use BEA estimates of the input-output matrix linking production

sectors in the U.S. to quantify the effects of shock propagation on the volatility of the aggre-

gate IP index. Because this calculation requires a model that incorporates linkages between

sectors, the first subsection describes a generalization of the framework first introduced in

Horvath (1998) that will be used. This framework extends that used by Long and Plosser

(1983) by considering capital along with non-storable intermediate inputs, and is effectively

a multisector version of the original Brock-Mirman (1972) one sector growth model. The

key feature of interest is that production in each sector uses materials produced in the other

sectors. Therefore, shocks to an individual sector may be disseminated to other sectors and

over time in a way that potentially contributes to aggregate fluctuations. This subsection

then describes conditions under which the factor model in (1) may, in fact, be interpreted

as a reduced form of the structural model with input-output linkages. It also illustrates how
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the structural model may be used to filter out the effects of these linkages. The following

subsection presents the quantitative results.

4.1 A Canonical Model with Input-Output Linkages

Consider an economy comprised of N distinct sectors of production indexed by j = 1, ..., N .

Each sector produces a quantity Yjt of good j at date t using sector-specific capital, Kjt,

labor, Ljt, and materials produced in the other sectors, Mijt, according to the technology

Yjt = AjtK
αj
jt

NY
i=1

M
γij
ijt L

1−αj− N
i=1 γij

jt , (2)

where Ajt is a productivity index for sector j.

The fact that each sector uses materials from other sectors represents the source of

interconnectedness in the model. An input-output matrix for this economy is an N × N
matrix Γ with typical element γij. The column sums of Γ give the degree of returns to scale

in materials in each sector. The row sums of Γ measure the importance of each sector’s

output as materials to all other sectors. Put simply, we can think of the rows and columns

of Γ as “sell to” and “buy from” respectively for each sector. We denote the vector of capital

shares by αd = (α1,α2, ...,αN)
0.

We let At = (A1t, A2t, · · · , ANt)0 denote the vector of productivity indices, and assume
that ln(At) follows the random walk,

ln(At) = ln(At−1) + εt, (3)

where εt = (ε1t, ε2t, ..., εNt)0 is a vector-valued martingale difference process with covariance

matrix Σεε. The degree to which sectoral productivity is influenced by aggregate shocks will

be reflected in the matrix Σεε. When Σεε is diagonal, sectoral productivity is affected only

by idiosyncratic shocks.

A representative agent derives utility from the consumption of these N goods according

to

Et

∞X
t=0

βt
NX
j=1

Ã
C1−σjt − 1
1− σ

− ψLjt

!
, (4)

where the labor specification follows Hansen’s (1985) indivisible labor model. In addition,

each sector is subject to the following resource constraint,

Cjt +
NX
i=1

Mjit +Kjt+1 − (1− δ)Kjt = Yjt, j = 1, ..., N . (5)
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This model is essentially that introduced by Horvath (1998) extended to allow for elastic

labor supply, less than full capital depreciation, and non-log preferences.

Details of the model solution to the planner’s problem are available in a separate tech-

nical appendix [Foerster, Sarte, and Watson (2008)]. While the model in Horvath (1998)

admits an analytical solution, that model’s assumption of full capital depreciation within

the quarter, in particular, makes it somewhat unsuitable for the purposes of an empiri-

cal investigation. The companion appendix shows that in the generalized version adopted

here, the deterministic steady state of the model continues to be analytically tractable.4

Furthermore, using a linear approximation of the model’s first-order conditions and resource

constraints around that steady state, one can show that the vector of sectoral output growth,

Xt = (∆ ln(Y1t),∆ ln(Y2t), ..., ∆ ln(YNt))
0 evolves according to

Xt = ΦXt−1 +Πεt + Ξεt−1, (6)

where Φ, Π, and Ξ are N ×N matrices that depend only on the model parameters, αd, Γ,

β, σ, ψ, and δ.

Suppose that innovations to sectoral productivity, εjt, reflect both aggregate shocks, St,

and idiosyncratic shocks, vjt, such that

εt = ΛsSt + vt. (7)

The matrix Λs governs the degree to which aggregate disturbances affect productivity in

individual sectors; when there are k aggregate factors in St, Λs is N × k. The vector

of disturbances, vt = (v1t, v2t, ..., vnt)
0, captures idiosyncratic shocks that are uncorrelated

across sectors and has diagonal covariance matrix Σvv.

Given equations (6) and (7), and denoting the lag operator by L, the evolution of sectoral

output growth can be written as

Xt = ΛFt + ut, (8)

where Λ(L) = (I − ΦL)−1(Π + ΞL)Λs, Ft = St, and ut = (I − ΦL)−1(Π + ΞL)vt. In other

words, the vector of sectoral output growth rates in this multisector extension of the standard

growth model produces an approximate factor model as a reduced form. The common factors

in this reduced form are associated with aggregate shocks to sectoral productivity while the

“uniquenesses” reflect linear combinations of the underlying structural sector-specific shocks.

In particular, the key issue is that input output linkages between sectors will induce some
4This feature is helpful since, in simulations of the model, it avoids having to solve for a large set of

non-linear equations involving 117 sectors (e.g. there are 13,689 steady state Mij allocations).
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cross-sectional dependence among the “uniquenesses” that may cause the statistical factor

model to overestimate the importance of aggregate shocks. This is most transparent in the

special case initially studied by Horvath (1998) with no labor, full depreciation, and log

preferences. In that case, the model’s exact solution is given by (6) with Φ = (I − Γ0)−1αd,

Ξ = 0, and Π = (I − Γ0)−1, so that

ut = (I − (I − Γ
0
)−1αdL)−1(I − Γ0)−1vt. (9)

Therefore, while sector specific shocks vt in the equation above have a diagonal covariance

matrix Σvv, the “uniquenesses,” ut, will exhibit some degree of cross-sectional dependence

induced by the input-output matrix Γ. Furthermore, by ignoring the comovement in “unique-

nesses,” the factor model would incorrectly attribute any resulting comovement in sectoral

output growth to aggregate shocks.

To eliminate the propagation effects of sector specific shocks induced by input-output

linkages, we filter the vector of data on sectoral output growth to construct εt where, from

equation (6),

εt = (Π+ ΞL)−1(I −ΦL)Xt. (10)

We can then apply factor analytic methods to the constructed series for εt to recover the

relative contribution of aggregate shocks, St, and sector specific shocks, vt, to the variability

of aggregate output.

4.2 Calibrating the Model Parameters

We shall interpret the model as describing the sectoral production indices analyzed in sections

2 and 3. Thus, we abstract from output of the service and public sectors. In addition, because

the model does not take into account delivery lags that would undoubtedly be relevant at

the monthly frequency, this section focuses on quarterly data.

In order to construct the filtered series described in equation (10), we must first calibrate

the model’s parameters. A subset of these parameters is standard and chosen in accordance

with previous work on business cycles. Thus, given our focus on quarterly data, we set

β = 0.99 and δ = 0.025. We further set σ = 1 and ψ = 1 as a benchmark. While we treat

these parameters as constant through time, the choice of input-output matrix, Γ, requires

more caution. In particular, we wish to capture the model’s implications for the filtered

series, εt, in equation (10) arising from potential low frequency changes in the structure of

U.S. production.
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The calibration of the parameters describing technology (γij and αj) derives from es-

timates of input-output tables supplied by the BEA. We use 117 sectors (i.e. N = 117)

which corresponds roughly to a four-digit level of disaggregation. The BEA “Input Use”

tables measure the value of inputs in producer prices, given by commodity codes, used by

each industry, described by industry codes. By matching commodity and industry codes,

we obtain the value of inputs from each industry used by every other industry. Moreover,

the input-output tables include compensation of employees (wages) and other value added

(rents on capital). We abstract from non-IP sectors, which include agriculture, services,

and government. A column sum in the input-output table represents total payments from

a given sector to all other sectors (i.e. material inputs, labor, and capital) and defines the

value of output in that sector. A row sum in the input-output table gives the importance

of a given sector as an input supplier to all other sectors, measured as the value of inputs

in other sectors’ production. Hence, input shares, γij, are calibrated as dollar payments

from industry j to industry i expressed as a fraction of the value of production in sector j.

Similarly, capital shares for the j-th industry reflect dollar payments to capital as a fraction

of the value of output in sector j.

To account for changes in the structure of U.S. input-output linkages before and after the

Great Moderation, we consider two BEA benchmark years, 1977 and 1998. BEA benchmark

tables are available only every five years but disaggregated more finely than tables available

in non-benchmark years. Unfortunately, as discussed in Section 2, the input-output tables for

the years prior to 1997 are not updated by the BEA to reflect the reclassification of industries

by NAICS definitions, and are broken down instead according to SIC codes. For consistency,

therefore, we include in our analysis vintage IP data provided by the Board of Governors

where sectors are disaggregated by SIC codes, and which cover the period 1967-2002. We

use these two data sources, and contrast the results associated with each, throughout the

remainder of the paper. Finally, the remaining set of parameters that need to be estimated

are those making up Σεε, the covariance matrix of the structural productivity shocks, εt.

We choose two calibrations for Σεε that help highlight the degree to which the model is

able propagate purely idiosyncratic shocks, and thus effectively transform these shocks into

common shocks. In the first calibration, Σεε is a diagonal matrix with entries given by the

sample variance of εt in the different IP sectors, where εt is computed from equation (10)

using quarterly sectoral production data on Xt. The sample variance of εt is computed over

different sample periods and using different data vintages (e.g. 1972-1983, 1984-2007 using

IP data defined by NAICS codes) to account for heteroskedasticity that may be important for
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the Great Moderation. Because this calibration uses uncorrelated sectoral shocks, it allows

us to determine whether input-output linkages per se can explain the strong covariance in

sectoral production that is necessary to generate the variability in aggregate output.

In the second calibration, we use a factor model to represent Σεε. That is, we model εt
as shown in equation (7) where, as in the last section, St is a k× 1 vector of common factors
and vt is an N × 1 vector of mutually uncorrelated sector-specific idiosyncratic shocks. In
this model, Σεε = ΛsΣSSΛ

0
s + Σvv, where Λs, and the covariance matrices ΣSS and Σvv,

are estimated using the principal components estimator of St constructed from the sample

values of εt. This second calibration allows two sources of covariance in sectoral output: a

structural component arising from input-output linkages and a statistical component arising

from aggregate shocks affecting sectoral productivity.

4.3 Results From the Structural Analysis

4.3.1 Comovement from Input-Output Linkages

Table 6 summarizes key results for the model when sectoral shocks are driven only by idio-

syncratic shocks that are cross-sectionally uncorrelated (i.e., Σεε is diagonal). The table

compares average pairwise correlations of sectoral output growth rates implied by the model

with those calculated in the data. It also contrasts the standard deviation of aggregate IP

implied by the model with that in the data. The matrix Σεε is calibrated over the samples

before and after the Great Moderation, and using both 1977 and 1998 input-output matrices

corresponding to SIC and NAICS sectoral decompositions respectively.

Table 6 makes several observations apparent. First, the data vintage is immaterial for

the calculations of average pairwise correlations despite the fact the vintages span different

pre- and post-Great Moderation sample periods. Irrespective of the vintage, one observes

a notable fall in the average pairwise correlation, and thus comovement, of sectoral growth

rates from roughly 0.27 in the first sample period to 0.11 after 1984. Second, the model

with input-output linkages and uncorrelated sector-specific shocks implies significantly less

comovement across sectors than in U.S. data. The model, therefore, falls considerably short

of matching the variability of aggregate IP growth rates. To get a sense of the quantitative

contribution of input-output linkages to aggregate IP variability, consider, for instance, the

data broken down by NAICS definitions. Over the 1972-1983 period, the model explains 17

percent of the variance in aggregate IP growth rates (0.17 = (3.7/8.9)2). In contrast, Table

2 indicates that the diagonal elements of the covariance matrix of sectoral IP growth rates
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account for roughly 7 percent of aggregate IP variance (0.07 = (2.4/8.9)2). The difference

(0.17 − 0.07) represents the contribution of input-output linkages to aggregate variability.
Similarly, over the 1984-2007 period, Table 6, panel (a), shows that the model explains

37 percent of the variance in aggregate IP growth rates. The diagonal elements of the

covariance matrix used in Table 2, in contrast, account for 17 percent of the variability in

aggregate IP. It appears, therefore, that the model with uncorrelated idiosyncratic shocks

explains a somewhat larger fraction of aggregate variability after the Great Moderation. As

a mechanical matter, because the same input-output matrix is used for the calculations in

both sample periods, the increased relative importance of sector-specific shocks does not

arise from changes in input-output linkages. Rather, they reflect a fall in the variability of

aggregate shocks after 1984.

Table 7, panels (a) and (b), present an alternative way of assessing the comovement

implied by the structural model with uncorrelated sector-specific shocks. In particular, the

table compares the eigenvalues of the correlation matrix of sectoral growth rates in the data

with selected percentiles of the distribution of eigenvalues obtained from sample correlation

matrices computed from model-simulated data.5 The data indicate one or two dominant

eigenvalues followed by eigenvalues of similar magnitudes. This pattern is consistent with

a factor model characterized by one or two common factors. Indeed, the Bai-Ng estimator

of the number of common factors is based on these eigenvalues, and the results in Table 7

explain why the Bai-Ng estimator finds two factors in the first sample period and one factor

in the second. In contrast, as the percentiles suggest, data generated from model simulations

using a diagonal covariance matrix, Σεε, are very unlikely to exhibit this pattern. Although

associated with some limited comovement, the eigenvalues of the sample correlation matrices

are generally of similar magnitude both across sample periods and across input-output matrix

definitions. Interestingly, therefore, changes in the structure of input-output relationships

between 1977 and 1998 have not lead to greater propagation of idiosyncratic shocks. This is

also consistent with the fact that in Table 6, average pairwise correlations of sectoral growth

rates from the model are similar both across sample periods and across input-output matrix

definitions.

Table 8 presents the same results as those shown in Table 6, but for the case where Σεε

is constructed from a specification with two common factors, so that Σεε = ΛsΣSSΛ
0
s + Σvv

from equation (7). The factors are estimated using the same method as in section 3 applied
5The percentiles were computed by Monte Carlo methods from the model with Gaussian errors and using

5000 draws. Results using the empirical distribution of errors computed from the U.S. data via equation

(10) yielded similar results.
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to the filtered series εt from equation (10). In contrast to the results shown in Table 6,

allowing aggregate shocks to affect sectoral productivity enables the model to capture the

average pairwise cross-correlation in sectoral growth rates found in the data, and produces

an aggregate IP index that is as volatile as in the U.S. data. In addition, Table 9 indicates

that the structural model now generates sample correlation matrices with eigenvalues much

like those found in the U.S. data.

4.3.2 Idiosyncratic vs. Aggregate Shocks

What then are the implications of the structural model for the relative importance of aggre-

gate and sector-specific shocks? Table 10 compares the fractions of IP variance explained by

aggregate shocks, St, in the structural model with those explained by common shocks, Ft, in

the statistical model of section 2. Three key results stand out. First, because the comove-

ment in sectoral growth rates is in part generated by way of input-output linkages, aggregate

shocks explain a somewhat lower fraction aggregate IP variability in the structural model

than in the statistical model. The difference, however, is small prior to the Great Moderation

although somewhat more pronounced after 1984. On the whole, the statistical factor model

represents a relatively robust way of capturing aggregate shocks. Second, aggregate produc-

tivity shocks explain the bulk of fluctuations in aggregate IP, although less so after the Great

Moderation. Interestingly, the fraction of aggregate IP variance explained by sector-specific

shocks nearly doubles, to approximately 30 percent, in the second sample period. This result

is driven mainly by a fall in the variability of aggregate shocks, St, over this second period.

Finally, the fall in the variability of St also explains nearly all of the decline in the post-1984

variance of aggregate IP growth rates.

Given the increase in the relative importance of sector specific shocks over the Great

Moderation period, Table 11 lists the sectors whose idiosyncratic shocks (vt in the structural

model above) explain the highest fraction of aggregate IP variability. To account for changes

in the structure of U.S. production, idiosyncratic shocks are constructed using the 1977

input-output matrix for the period 1967-1983 and the 1998 input-output matrix over 1984-

2007. The table highlights several facts. First, the highest ranked sectors tend to be those

that serve as inputs to many other sectors. This is the case, for example, of “Basic Steel

and Mill Products” in the pre-1984 period (6.4 percent), which corresponds to “Iron and

Steel Products” after 1984 (4.2 percent). It is also true of “Utilities” prior to 1984, which

corresponds approximately to “Electric Power Generation and Distribution” in the second

sample period. Second, because of the reduced variability of aggregate shocks in the post-
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1984 period, individual sectors can play a measurable role in IP fluctuations after 1984.

Prior to 1984, there were only two sectors whose idiosyncratic shocks alone explained more

than 1 percent of the variation in aggregate IP growth rates. In contrast, all sectors in

Table 11, panel (b), now have idiosyncratic shocks that independently explain more than

1 percent of aggregate IP fluctuations. Finally, Table 11 points to some changes in the

structure of U.S. production. For example, “Coal Mining”, a traditional industry ranked

second prior to 1984 (at 3.4 percent), is no longer among the highest ten ranked sectors

in the second sample period. Similarly, “Electronic Components” moved up in the ranking

(from 0.2 percent to 2.6 percent) and “Aerospace Products and Parts”, becomes one of the

sectors whose idiosyncratic behavior matters most (1.5 percent) in the post-1984 period.

4.3.3 Additional Considerations

Although sector-specific shocks have played a relatively greater role in driving aggregate

IP movements since 1984, it remains that the principal source of variation in IP stems

from aggregate shocks. This is why the sectors listed in Table 4 ultimately do a better job of

tracking IP movements than those listed in Table 11. The result concerning aggregate shocks

as a dominant source of variation in IP is in part related to the structure of the input-output

matrix for U.S. production, but it also reflects the way in which this matrix interacts with

other parameters of the structural model. For example, assuming that capital depreciates

fully within the period (i.e. δ = 1), Horvath (1998) finds that independent sector-specific

shocks contribute an important fraction of aggregate volatility. For comparison, therefore,

Table 12, panels (a) and (b), contrasts the findings under our benchmark calibration, δ =

0.025, with those that obtain with full depreciation, δ = 1. As expected, setting δ = 1

noticeably increases the fraction of variability in IP growth rates explained by idiosyncratic

shocks, especially in the second sample period. Consistent with this finding, the average

pairwise correlation of output growth across sectors generated by purely idiosyncratic shocks

(i.e. 0 factors), essentially doubles when δ = 1. To see why this is the case, recall equation

(5) and move the undepreciated capital to the other side of the equation to define a broad

notion of technology,

eYjt = AjtKαj
jt

NY
i=1

M
γij
ijt L

1−αj− N
i=1 γij

jt + (1− δ)Kjt. (11)

When δ is small, as in our benchmark calibration, a considerable part of a given sector’s

production does not respond contemporaneously to its own idiosyncratic shocks. This is also

true of aggregate shocks but these affect all sectors in the same way. In contrast, when δ = 1,
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the second term in (11) vanishes and idiosyncratic shocks have a more direct effect on eYjt.
In the filtering process, therefore, a greater portion of fluctuations in sectoral output growth

is attributed to idiosyncratic shocks, which are then propagated by way of input-output

linkages. This will then be reflected in an increase of pairwise correlations of output growth

rates across sectors.

Finally, Table 13 shows how our findings for the benchmark model change with the level of

data disaggregation. In this exercise, we use the 1998 input-output matrix and corresponding

IP data since they provide the highest degree of disaggregation. As the data become less

disaggregated, average pairwise correlations of sectoral IP growth rates increase both in the

data and in the structural model.6 As a result, the fraction of variability in aggregate IP

growth rates explained by aggregate shocks remains essentially unchanged across levels of

disaggregation.

5 Concluding Remarks

In this paper, we explore various leading explanations underlying the volatility of industrial

production and its decline since 1984. We find that neither time variation in the sectoral

shares of IP nor their distribution are important factors in determining the variability of

the aggregate IP index. Instead, the analysis reveals that aggregate shocks largely explain

changes in aggregate IP, and a decrease in the volatility of these shocks explains why aggre-

gate IP is considerably less variable after 1984. Because of this decline in the variability of

aggregate shocks, the relative importance of sector-specific shocks has more than doubled

over the Great Moderation period. Specifically, while sector-specific shocks explain approx-

imately 12 percent of the variation in IP growth prior to 1984, they account for about 30

percent of IP fluctuations after the onset of the Great Moderation. We have also shown that

changes in the structure of the input-output matrix between 1977 and 1998 have not lead to

a more pronounced propagation of sectoral shocks.

The analysis also highlights the conditions under which neoclassical multisector growth

models of the type first studied by Long and Plosser (1983) admit an approximate factor

model as a reduced form. In doing so, it bridges two literatures, one that has relied on factor

analytic methods to assess the relative importance of aggregate and idiosyncratic shocks, and

the other rooted in more structural calibrated models that explicitly take into account input-
6This is not surprising since movements in output growth across more broadly defined sectors will reflect

common shocks to their constituent sectors.
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output linkages across sectors. In the reduced form factor model, aggregate shocks emerge

as the common output factors. The “uniquenesses” are associated with sector specific shocks

but, because of input-output linkages, these can be cross sectionally correlated. A generalized

version of the model studied by Horvath (1998), however, suggests that the degree of sectoral

comovement generated by input-output linkages is limited.
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Appendix A
Data on Industrial Production is obtained from the Board of Governors of the Federal

Reserve System and disaggregated according to the North American Industry Classification

System (NAICS). The raw data are indices of real output, from which we compute sectoral

growth rates and sectoral shares in aggregate IP. While data on the vast majority of sectors

is directly available from the Board of Governors, growth rates for any missing sectors are

approximated using the Board’s recommended methodology. For example, if industry C is

composed of industry A and industry B, then the growth rate of C’s output is approximated

by
IPCt
IPCt−1

=
WAt−1 IPAt

IPAt−1
+WBt−1 IPBt

IPBt−1

WAt−1 +WBt−1
where Wit−1 is the share of industry i at date t− 1, and WCt−1 =WAt−1 +WBt−1. Alterna-

tively, if industry C is made up of industry A less industry B, then

IPCt
IPCt−1

=
WAt−1 IPAt

IPAt−1
−WBt−1 IPBt

IPBt−1

WAt−1 −WBt−1
,

andWCt−1 =WAt−1−WBt−1. As mentioned in the text, we also make use of vintage IP data,

provided by the Board of Governors, which are disaggregated according to Standard Industry

Classification (SIC) codes. Growth rates and shares for missing sectors are computed in the

manner we have just described. A basic summary of the IP data is provided in Table A1.

Benchmark Input-Output tables, available every five years, are obtained from the Bureau

of Economic Analysis. The “Use Table” measures the value of inputs in producer prices, given

by commodity codes, used by each industry, given by industry codes, as well as payments

to other factors such as labor and capital. The original data are in the most disaggregated

format, and we aggregate industries by adding dollar values for these industries. We consider

benchmark tables for 1977 and 1997 which are broken down according SIC and NAICS

industry definitions respectively.

In order to match the input-output matrices with IP data, we aggregate or disaggregate

the two data types until the smallest industry level for which both data sources are available

is found. Put another way, we find the smallest set of common industries for which we can

match both IP and input-output data. Because the two data sources are originally disag-

gregated to different levels, the sectoral breakdown we end up using represents collections

of either NAICS or SIC industry levels (depending on whether we are using current or vin-

tage IP data). The approach is as follows: taking the finest available partition of industries

from the benchmark input-output tables, we match up as many industries as possible; the
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remaining industries with no matches are aggregated until a match is found. The result are

collections of industries whose level of disaggregation ranges from 2-digit to 5-digit levels.

Results reported in the text are for the highest level of disaggregation available, the 5-digit

level, unless otherwise stated.

Data from the 1997 input-output table are matched with IP data disaggregated using

NAICS definitions over the period 1972Q1-2007Q4. Similarly, data from the 1977 input-

output Table are matched with IP data broken down by SIC code from 1967Q1-2002Q3.

The reclassification of industries from the SIC system to the NAICS system, and the fact

that older input-output tables are not updated according to NAICS definitions, makes the use

of vintage IP data necessary since there is no easy mapping from SIC to NAICS definitions.
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Figure 1

Growth Rates of Industrial Production

(Percentage points at an annual rate)

A. Monthly Data

B. Quarterly Data
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Figure 2

Standard Deviation of Sectoral IP Growth Rates

(Percentage points at an annual rate)

A. Monthly Growth Rates

B. Quarterly Growth Rates

26



Figure 3

Factor Decomposition of Industrial Production

(Percentage points at an annual rate)

A. Monthly Data

B. Quarterly Data

27



Figure 4

Distribution of R2i (F ) of Sectoral Growth Rates

A. Monthly Growth Rates

B. Quarterly Growth Rates
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Table 1

Average Pairwise Correlation of Sectoral IP Growth Rates

Monthly Growth Rates Quarterly Growth Rates

1972-2007 1972-1983 1984-2007 1972-2007 1972-1983 1984-2007

0.08 0.13 0.05 0.19 0.27 0.11

Table 2

Standard Deviation of IP Growth Rates

(Percentage points at annual rate)

Share Weights Used to Monthly Growth Rates Quarterly Growth Rates

Aggregate Sectoral IP 1972- 1972- 1984- 1972- 1972- 1984-

2007 1983 2007 2007 1983 2007

a. Full Covariance Matrix of Sectoral Growth Rates

Time Varying (wit) 8.3 11.6 6.2 5.8 8.7 3.6

Constant (μw) 8.4 11.7 6.2 5.8 8.9 3.6

Equal (1/N) 10.4 14.4 7.6 6.9 10.5 4.2

b. Diagonal Covariance Matrix of Sectoral Growth Rates

Time Varying (wit) 4.3 4.9 4.1 1.9 2.6 1.6

Constant (μw) 4.2 4.6 4.0 1.9 2.4 1.5

Equal (1/N) 4.6 5.6 4.0 1.8 2.5 1.4

Table 3

Decomposition of Variance from Statistical 2-Factor Model

Monthly Growth Rates Quarterly Growth Rates

1972-1983 1984-2007 1972-1983 1984-2007

Std. Deviation of IP Growth Rates

Implied by Factor Model 11.7 6.2 8.9 3.6

(with Constant Share Weights)

R2(F ) 0.86 0.49 0.89 0.87
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Table 4

Fraction of Variability in Sectoral Growth Rates Explained by Common Factors

(Quarterly Data)

1972-1983

Sector R2i (F )

Other Fabricated Metal Products 0.86

Fabricated Metals: Forging and Stamping 0.85

Machine Shops: Turned Products and Screws 0.83

Commercial and Service Industry Machinery/Other General Purpose Machinery 0.83

Foundries 0.80

Other Electrical Equipment 0.79

Metal Working Machinery 0.78

Fabricated Metals: Cutlery and Handtools 0.76

Electrical Equipment 0.73

Architectural and Structural Metal Products 0.72

1984-2007

Sector R2i (F )

Coating, Engraving, Heat Treating, and Allied Activities 0.68

Plastic Products 0.67

Commercial and Service Industry Machinery/Other General Purpose Machinery 0.65

Fabricated Metals: Forging and Stamping 0.65

Household and Institutional Furniture and Kitchen Cabinets 0.59

Veneer, Plywood, and Engineered Wood Products 0.59

Metal Working Machinery 0.52

Foundries 0.52

Millwork 0.51

Other Fabricated Metal Products 0.50
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Table 5

Information Content of IP Contained in Individual Sectors

Selected Sectors Ranked Fraction of IP Explained Fraction of IP Explained

by R2i (F ) by Selected Sectors: 1972-1983 by Selected Sectors: 1972-1983

Top 5 Sectors 85.0 75.4

Top 10 Sectors 90.3 80.4

Top 20 Sectors 97.9 86.4

Top 30 Sectors 98.8 90.3

Table 6

Sectoral Correlations and Volatility of IP Growth Rates

Quarterly U.S. Data and Values Implied by Model with Uncorrelated Sector-Specific Shocks

NAICS (1998 IO Matrix) SIC (1977 IO Matrix)

1972-1983 1984-2007 1967-1983 1984-2002

Data Model Data Model Data Model Data Model

Average Pairwise

Correlation of Sectoral 0.27 0.04 0.11 0.03 0.23 0.05 0.12 0.04

Growth Rates

Standard Deviation of 8.9 3.7 3.6 2.2 8.5 4.0 3.9 2.4

IP Growth Rate
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Table 7

Largest Eigenvalues of Sample Correlation Matrix

IO Model with Uncorrelated Sector-Specific Shocks

a. NAICS (1998 IO Matrix)

1972-1983 1984-2007

Model %-tiles Model %-tiles

Eigenvalue Rank Data 1 50 99 Data 1 50 99

1 39.4 6.6 8.0 10.1 18.5 4.7 5.5 6.7

2 11.0 5.8 6.4 7.3 6.7 4.1 4.5 5.0

3 5.9 5.3 5.8 6.3 5.1 3.8 4.1 4.5

4 4.8 5.0 5.4 5.8 4.4 3.6 3.8 4.1

5 4.6 4.7 5.0 5.4 4.1 3.5 3.7 3.9

6 4.1 4.5 4.8 5.1 3.6 3.3 3.5 3.7

7 3.5 4.2 4.5 4.8 3.4 3.2 3.4 3.5

b. SIC (1977 IO Matrix)

1967-1983 1984-2002

Model %-tiles Model %-tiles

Eigenvalue Rank Data 1 50 99 Data 1 50 99

1 30.8 5.9 7.4 9.2 16.9 5.2 6.2 7.7

2 9.1 4.6 5.1 5.8 6.0 4.3 4.8 5.5

3 4.6 4.3 4.6 5.1 4.7 4.0 4.4 4.8

4 4.2 4.0 4.3 4.7 4.3 3.8 4.1 4.4

5 3.6 3.8 4.1 4.4 4.0 3.6 3.9 4.1

6 3.4 3.6 3.8 4.1 3.9 3.5 3.7 3.9

7 3.1 3.4 3.7 3.9 3.6 3.3 3.5 3.7
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Table 8

Sectoral Correlations and Volatility of IP Growth Rates

Quarterly U.S. Data and Values Implied by 2-factor Model for Sector-Specific Shocks

NAICS (1998 IO Matrix) SIC (1977 IO Matrix)

1972-1983 1984-2007 1967-1983 1984-2002

Data Model Data Model Data Model Data Model

Average Pairwise

Correlation of Sectoral 0.27 0.27 0.11 0.11 0.23 0.23 0.12 0.12

Growth Rates

Standard Deviation of 8.9 9.1 3.6 3.7 8.5 8.8 3.9 4.2

IP Growth Rate
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Table 9

Largest Eigenvalues of Sample Correlation Matrix

IO Model with 2 Factors for Sector-Specific Shocks

a. NAICS (1998 IO Matrix)

1972-1983 1984-2007

Model %-tiles Model %-tiles

Eigenvalue Rank Data 1 50 99 Data 1 50 99

1 39.4 30.1 39.7 48.4 18.5 14.9 19.2 23.6

2 11.0 8.4 12.2 16.9 6.7 6.3 8.3 10.6

3 5.9 3.6 4.2 5.0 5.1 3.4 3.8 4.4

4 4.8 3.3 3.7 4.3 4.4 3.2 3.5 3.8

5 4.6 3.0 3.5 3.9 4.1 3.0 3.2 3.5

6 4.1 2.8 3.2 3.7 3.6 2.8 3.1 3.3

7 3.5 2.7 3.0 3.4 3.4 2.7 2.9 3.1

b. SIC (1977 IO Matrix)

1967-1983 1984-2002

Model %-tiles Model %-tiles

Eigenvalue Rank Data 1 50 99 Data 1 50 99

1 30.8 25.0 32.0 39.0 16.9 13.8 18.3 23.0

2 9.1 6.3 8.6 11.3 6.0 5.4 7.2 9.4

3 4.6 3.3 3.8 4.6 4.7 3.6 4.0 4.7

4 4.2 3.0 3.3 3.8 4.3 3.4 3.7 4.1

5 3.6 2.8 3.1 3.5 4.0 3.2 3.4 3.8

6 3.4 2.6 2.9 3.2 3.9 3.0 3.3 3.5

7 3.1 2.5 2.7 3.0 3.6 2.9 3.1 3.4
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Table 10

Decomposition of Variance from Statistical and Structural 2-Factor Models

NAICS Definitions SIC Definitions

1972-1983 1984-2007 1967-1983 1984-2002

Std. Deviation of IP Growth Rates 8.9 3.6 8.5 3.9

R2(F ) - Statistical Model 0.89 0.87 0.85 0.94

R2(S) - Structural Model 0.88 0.69 0.83 0.72
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Table 11

Fraction of Aggregate IP Explained by Sector-Specific Shocks

2-Factor Model, 10 Largest Values

a. 1967-1983 (SIC)

Sector Fraction

Basic Steel and Mill Products 0.064

Coal Mining 0.034

Motor Vehicles, Trucks, and Buses 0.008

Utilities 0.007

Oil and Gas Extraction 0.005

Copper Ores 0.004

Iron and Other Ores 0.003

Petroleum Refining and Miscellaneous 0.003

Motor Vehicle Parts 0.003

Electronic Components 0.002

b. 1984-2007 (NAICS)

Iron and Steel Products 0.042

Electric Power Generation and Distribution 0.036

Semiconductors and Other Electronic Components 0.026

Oil and Gas Extraction 0.017

Automobiles and Light Duty Motor Vehicles 0.017

Organic Chemicals 0.017

Aerospace Products and Parts 0.015

Motor Vehicle Parts 0.013

Natural Gas Distributions 0.012

Support Activity for Mining 0.011
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Table 12

Sectoral Correlations and Fraction of IP Variance

Explained by Aggregate Shocks

Capital Depreciation Rate δ = 0.025 δ = 1

a. NAICS (1998 IO Matrix)

1972-1983 1984-2007 1972-1983 1984-2007

Fraction of Aggregate IP Variance

Explained by Aggregate Shocks, R2(S) 0.88 0.69 0.74 0.30

Average Pairwise Correlation of

Sectoral IP Growth Rates (0 factors) 0.04 0.03 0.09 0.07

b. SIC (1977 IO Matrix)

1972-1983 1984-2007 1972-1983 1984-2007

Fraction of Aggregate IP Variance

Explained by Aggregate Shocks, R2(S) 0.83 0.72 0.61 0.39

Average Pairwise Correlation of

Sectoral IP Growth Rates (0 factors) 0.05 0.04 0.10 0.08

Table 13

Sectoral Correlations and Fraction of IP Variance Explained

by Aggregate Shocks Across Levels of Disaggregation

1972-1983 1984-2007

a. Average Pairwise Correlation of Sectoral Growth Rates

Model Data Model Data

2-Digit Level, 26 Sectors 0.12 0.43 0.11 0.28

3-Digit Level, 88 Sectors 0.05 0.31 0.04 0.15

4-Digit Level, 117 Sectors 0.04 0.27 0.03 0.11

b. Fraction of IP Variance Explained by Aggregate Shocks

2-Digit Level, 26 Sectors 0.87 0.70

3-Digit Level, 88 Sectors 0.88 0.70

4-Digit Level, 117 Sectors 0.88 0.69
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